


 



Time-Frequency Transforms for Radar
Imaging and Signal Analysis



For a listing of recent titles in the Artech House
Radar Library, turn to the back of this book.



Time-Frequency Transforms for Radar
Imaging and Signal Analysis

Victor C. Chen
Hao Ling

Artech House
Boston • London

www.artechhouse.com



Library of Congress Cataloging-in-Publication Data
Chen, Victor C..

Time-frequency transforms for radar imaging and signal analysis / Victor C. Chen,
Hao Ling.

p. cm. — (Artech House radar library)
Includes bibliographical references and index.
ISBN 1-58053-288-8 (alk. paper)
1. Radar—Mathematics. 2. Signal processing—Mathematics. 3. Imaging
systems—Mathematics. 4. Time-domain analysis. I. Ling, Hao. II. Title.
III. Series.

TK6578.C44 2002
621.3848—dc21 2001055229

British Library Cataloguing in Publication Data
Chen, Victor C.

Time-frequency transforms for radar imaging and signal analysis. — (Artech House
radar library)
1. Radar 2. Signal processing 3. Time-series analysis 4. Frequency spectra
I. Title II. Ling, Hao
621.3’848

ISBN 1-58053-288-8

Cover design by Igor Valdman

 2002 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage and retrieval system, without
permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

International Standard Book Number: 1-58053-288-8
Library of Congress Catalog Card Number: 2001055229

10 9 8 7 6 5 4 3 2 1



Contents

Foreword xi

Preface xiii

Acknowledgments xvii

1 Introduction 1

1.1 Electromagnetic Back-Scattering from Targets 6

1.2 Radar Signal and Noise 9
1.2.1 Signal Waveforms 9
1.2.2 The SNR 11

1.3 Radar Ambiguity Function and Matched
Filter 13

1.3.1 Radar Ambiguity Function 13
1.3.2 Matched Filter 17
1.3.3 Pulse Compression 19

1.4 Synthetic Aperture Radar Imaging 20
1.4.1 Range Profile 21
1.4.2 Range Resolution 21

v



vi Time-Frequency Transforms for Radar Imaging and Signal Analysis

1.4.3 Cross-Range Resolution 22
References 22

2 Time-Frequency Transforms 25

2.1 Linear Time-Frequency Transforms 26
2.1.1 The STFT 28
2.1.2 The CWT 32
2.1.3 Adaptive Time-Frequency Representation 33

2.2 Bilinear Time-Frequency Transforms 36
2.2.1 The WVD 37
2.2.2 Cohen’s Class 39
2.2.3 The TFDS 42

References 45

3 Detection and Extraction of Signal in Noise 47

3.1 Introduction 48

3.2 Time-Varying Frequency Filtering 48

3.3 SNR Improvement in the Time-Frequency
Domain 51

3.3.1 SNR Definition Suitable for Signal Detection
and Extraction 54

3.3.2 SNR in the Joint Time-Frequency Domain 56

3.4 CFAR Detection in the Joint Time-Frequency
Domain 57

3.5 Signal Extraction in the Joint Time-Frequency
Domain 61

3.5.1 Time-Frequency Expansion and
Reconstruction 61

3.5.2 Time-Frequency Masking and Signal
Extraction 62
References 63



viiContents

4 Time-Frequency Analysis of Radar Range
Profiles 65

4.1 Electromagnetic Phenomenology Embedded in
Back-Scattered Data 66

4.2 Time-Frequency Representation of Range
Profiles 70

4.3 Application of High-Resolution Time-
Frequency Techniques to Scattering Data 77

4.3.1 Use of the CWT 77
4.3.2 Use of the TFDS 79
4.3.3 Windowed Superresolution Algorithm 81
4.3.4 Adaptive Gaussian Representation 83

4.4 Extraction of Dispersive Scattering Features
from Radar Imagery Using Time-Frequency
Processing 85
References 89

5 Time-Frequency-Based Radar Image
Formation 93

5.1 Radar Imaging of Moving Targets 94

5.2 Standard Motion Compensation and Fourier-
Based Image Formation 102

5.3 Time-Frequency-Based Image Formation 104

5.4 Radar Imaging of Maneuvering Targets 107
5.4.1 Dynamics of Maneuvering Targets 107
5.4.2 Radar Imaging of Maneuvering Target Using

Time-Frequency-Based Image Formation 108

5.5 Radar Imaging of Multiple Targets 113
5.5.1 Multiple-Target Resolution Analysis 113
5.5.2 Time-Frequency-Based Phase Compensation

for Multiple Targets 117



viii Time-Frequency Transforms for Radar Imaging and Signal Analysis

5.5.3 Time-Frequency-Based Image Formation for
Radar Imaging of Multiple Targets 119

5.6 Summary 120
References 120

6 Motion Compensation in ISAR Imaging
Using Time-Frequency Techniques 123

6.1 Motion Compensation Algorithms 124

6.2 Time-Frequency-Based Motion Compensation 126
6.2.1 Estimating Phase Using Adaptive Time-

Frequency Projection 128
6.2.2 Motion Error Elimination 129

6.3 Motion Compensation Examples of Simulated
and Measured Data 131

6.4 Presence of 3D Target Motion 135
References 144

7 SAR Imaging of Moving Targets 147

7.1 Radar Returns of Moving Targets 148
7.1.1 Range Curvature 149
7.1.2 Clutter Bandwidth 150
7.1.3 Analysis of Radar Returns from Moving

Targets 152

7.2 The Effect of Target Motion on SAR Imaging 155

7.3 Detection and Imaging of Moving Targets 157
7.3.1 Single-Aperture Antenna SAR 157
7.3.2 Multiple-Antenna SAR 161

7.4 SAR Imaging of Moving Targets Using Time-
Frequency Transforms 165

7.4.1 Estimation of Doppler Parameters Using
Time-Frequency Transforms 166



ixContents

7.4.2 Time-Frequency-Based SAR Image Formation
for Detection of Moving Targets 168
References 170

8 Time-Frequency Analysis of Micro-Doppler
Phenomenon 173

8.1 Vibration-Induced Micro-Doppler 174
8.1.1 Time-Frequency Signature of a Vibrating

Scatterer 177
8.1.2 An Example of Micro-Doppler Signatures of

Moving Targets 179

8.2 Rotation-Induced Micro-Doppler 181
8.2.1 Rotor Blade Motion 181
8.2.2 Radar Returns from Rotor Blades 181
8.2.3 Time-Domain Signatures of Rotation-Induced

Modulations 184
8.2.4 Frequency-Domain Signatures 188
8.2.5 Time-Frequency Signatures 190

References 192

9 Trends in Time-Frequency Transforms for
Radar Applications 193

9.1 Applications of Adaptive Time-Frequency
Transforms 193

9.2 Back-Scattering Feature Extraction 194

9.3 Image Formation 195

9.4 Motion Compensation 195

9.5 Moving Target Detection 196

9.6 Micro-Doppler Analysis 198
References 199



x Time-Frequency Transforms for Radar Imaging and Signal Analysis

List of Acronyms 203

About the Authors 205

Index 207



Foreword

The exposition and exploitation of joint time-frequency methods of signal
analysis is at present an area of vigorous research and development, and
many international conferences and symposia address this topic.

The mathematical basis for joint time-frequency signal analysis has
been established and theoretically understood for quite a few years; however,
the computational requirements for real-time signal processing and effective
graphical visualization of results has exceeded commonly available computers
until quite recently. Today, affordable workstations or personal computers
with sufficient computing and graphical display capability are readily available
to implement real-time time-frequency transforms and dynamically visualize
time-dependent aspects of spectral signal structure. These are exactly the tools
necessary to exploit joint time-frequency methods for radar-signal analysis and
imaging of moving targets.

Drs. Chen and Ling are each forging new ways of applying time-
frequency processing to radar-signal analysis, radar imaging, and extraction
of target features from moving targets. They combine their research efforts
in this book to produce the first self-contained description of joint time-
frequency processing methods uniquely adapted to radar applications.

A concise review of radar and time-frequency transforms is provided
as background needed to appreciate how joint time-frequency processing
methods can improve conventional time or frequency processing methods.
The book then describes and illustrates the advantages of using joint time-
frequency processing for radar signal detection, range profile analysis,
synthetic aperture radar, inverse synthetic aperture radar imaging, and micro-

xi
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Doppler signal analysis. The last chapter describes current trends regarding
time-frequency transforms for radar applications and indicates on-going
research topics. In summary, the contents of this book are well balanced
between pedagogical and current research material, and the many illustrations
facilitate comprehension of the material presented.

The ultimate goal of radar-signal analysis and radar imaging is not
merely to detect or form a picture of the target, but to automate processing
that contributes to the identification of the target. For noncooperative targets,
this goal remains elusive. This timely book presents new tools that address
this problem, and it is hoped that it will stimulate even more ideas.

William J. Miceli
Associate Director

The Office of Naval Research
International Field Office



Preface

Joint time-frequency analysis has been a topic of much interest in the signal
processing community in the past decade. The vigorousness of research
activities is especially evident from the number of conferences and special
topic sessions dedicated to joint time-frequency representations. Over the
past ten years, time-frequency transforms have also been investigated by
radar researchers as a unique tool for radar-specific signal analysis and image
processing applications. Both traditional time-frequency techniques, as well
as the new tools developed in the signal processing community, have been
applied to various radar problems. Like the developments in other fields,
such as underwater acoustics and speech processing, it was found that time-
frequency transforms provide additional insight into the analysis, interpreta-
tion, and processing of radar signals that is sometimes superior to what is
achievable in the traditional time or frequency domain alone. The specific
applications where time-frequency transforms have been used include signa-
ture analysis and feature extraction, motion compensation and image forma-
tion, signal denoising, and imaging of moving targets.

The intent of this book is to provide a summary of the authors’ research
into applying time-frequency transforms to radar applications. In particular,
our focus is on the extraction of target features from the radar-backscattered
signal for the purpose of signature diagnostics and automatic target recogni-
tion. Both one-dimensional range profiles and two-dimensional radar imag-
ery, two traditional feature spaces for mapping the geometrical details of
the target, are considered. We describe time-frequency techniques for ex-
tracting other structural features on the target due to higher-order scattering

xiii
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mechanisms and complex target motions. Our objective is to document the
progress made in this area of research and provide a handy reference for
researchers interested in this field. In the process, we hope that this book
will stimulate additional work in this area and lead to further advances in
the state of the art.

This book is organized as follows: In Chapter 1, we provide a brief
introduction to basic radar concepts, including radar-backscattering princi-
ples, radar waveforms, noise and clutter, ambiguity functions, match filter,
and pulse compression. We also introduce the idea of radar imaging, including
both synthetic aperture radar (SAR) and inverse synthetic aperture radar
(ISAR). In Chapter 2, we provide an overview of joint time-frequency
transforms. Our discussions cover both linear transforms, such as the short-
time Fourier transform, the continuous wavelet transform and the adaptive
spectrogram, and bilinear transforms, including the Wigner-Ville distribu-
tion, Cohen’s class, and the time-frequency distribution series. In Chapter
3, we discuss the use of time-frequency transforms in the detection and
extraction of radar signal in noise. The concept of the time-varying frequency
filter is introduced for the denoising of radar signal in noise.

Chapters 4 and 5 discuss the main developments of time-frequency
transforms for radar-signal analysis and image processing. In Chapter 4, we
describe the use of time-frequency transforms for one-dimensional radar range
profiles. In particular, we focus on how complex electromagnetic scattering
mechanisms can be better analyzed and interpreted in the joint time-
frequency space. We also illustrate the use of high-resolution time-frequency
transforms for localizing and extracting the time-frequency scattering features.
In Chapter 5, the use of time-frequency transforms for two-dimensional
radar-image formation is detailed. We discuss radar imaging of moving
targets and the time-varying behavior of their Doppler shifts, as well as how
time-frequency analysis is used for radar imaging of multiple targets.

Chapters 6, 7, and 8 describe more specific applications of time-
frequency transforms for radar. In Chapter 6, we discuss the use of joint
time-frequency analysis for ISAR motion compensation. In Chapter 7, we
discuss the use of time-frequency transforms in SAR imaging of moving
targets. In Chapter 8, we describe the use of time-frequency transforms to
analyze the micro-Doppler phenomenon on targets. Finally, in Chapter 9,
we conclude by providing current trends and future outlooks in applying
time-frequency transforms for radar applications. We should point out that
this book mainly emphasizes the application perspective (i.e., how and what
type of time-frequency transform can be used to carry out radar signal
processing and extract relevant target information effectively). Although we
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give an overview of the time-frequency tools, no detailed theoretical treatment
is provided. For more fundamental discussion of time-frequency analysis,
the readers are referred to the two excellent books on joint time-frequency
analysis, one by Leon Cohen and one by Shie Qian and Dapang Chen
(Chapter 2, [2, 3]).
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1
Introduction

Radar is an electromagnetic instrument used for the detection and location
of targets, such as aircraft, ships, and ground vehicles. It transmits electromag-
netic energy to a target and receives the reflected signal from the target and
clutter as illustrated in Figure 1.1. Any unwanted radar return that can
interfere with the detection of the desired targets is referred to as clutter.
From the received radar signal, target-related information such as location
and velocity can be accurately measured. Compared to optical and infrared
sensors, the radar as a radio frequency (RF) sensor can perform at long range,
with high accuracy, and under all weather conditions. Therefore, it has been
widely used for civilian and military purposes [1–3].

Suppose a radar transmits a signal sT (t ) at RF f0. The received signal
sR (t ) reflected from a target is proportional to the transmitted signal with
a round-trip delay sT (t − t ) and scaled by the reflectivity function r of the
target,

sR (t ) ~ r sT (t − t ) = r exp{ jv0(t − t )} (1.1)

= r exp{ j2p f0(t − t )} (0 ≤ t ≤ T )

where T is the time duration of the signal and v0 = 2p f0 is the angular
frequency of the signal.

The round-trip travel time t is determined by

t =
2R
c

(1.2)

1
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Figure 1.1 Radar operational scenario.

where R is the range from the radar to the target and c is the speed of
electromagnetic wave propagation.

When the target is moving with a velocity VR relative to the radar,
called the radial velocity, the radar signal must travel a longer or shorter
distance to reach the target. The signal received at time t is reflected from
the target at time (t − t (t )/2), and the round-trip travel time is a time-
varying delay t (t ).

In addition to the signal reflected from the target, there is also additive
noise. The signal-to-noise ratio (SNR) at the radar receiver is determined
by the intensity of the received signal, the noise figure, and bandwidth of
the receiver. Any improvement in SNR will increase the probability of the
target detection and the accuracy of parameter estimation.

Radar usually transmits a sequence of pulses or other signal waveforms
at a pulse repetition frequency (PRF) required by the maximum range of
detection. In the radar receiver, the received RF signal is first converted to
an intermediate frequency (IF) signal. Then, the IF signal is converted into
two video frequency signals, the in-phase and the quadrature-phase (I and
Q) components, using two synchronous detectors that have an identical
reference signal but 90-degree phase difference between them. The I and Q
signals can preserve the phase information contained in the IF signal and,
thus, enable the positive and the negative Doppler frequency shift to be
distinguished [1–3].

Target information embedded in the returned signals may be examined
directly from the radar range profile [i.e., the distribution of target reflectivity
along the radar line of sight (LOS) to the target] or from its frequency
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spectrum by applying the Fourier transform [4–7]. The target’s range mea-
sured along the radar LOS can be estimated by the time-delay between the
transmitted signal and the received signal. For a moving target, its velocity
is measured based on the well-known Doppler effect. If the radar transmits
a signal at a frequency f0, the reflected signal from the moving target is
subjected to a Doppler frequency shift fD from its transmitted frequency f0
induced by the relative motion between the radar and the target. In the case
where a target has a radial velocity VR , the Doppler frequency shift fD is
determined by the radial velocity of the target and the radar transmitted
frequency f0:

fD = −2f0
VR
c

(1.3)

where VR is defined as a positive value when the target is moving away from
the radar. Therefore, if a target is moving towards the radar at a velocity
VR = −1000 (ft/s) = −304.8 (m/s), the Doppler frequency shift for X-band
radar operated at 9,842 MHz is +20 kHz.

Radar targets, especially man-made targets, can be considered as a
collection of point-scatterers. These scatterers may have a large variety of
reflecting or back-scattering behaviors [8, 9]. They can be surfaces, edges,
corners, dihedrals, trihedrals, and cavities (Figure 1.2). Each type of scatterer
has a different back-scattering behavior.

Figure 1.2 Man-made targets: surface, edge, corner, trihedral, and cavity.
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Radar range profiles can provide target information about target length
and positions of strong scatterers, such as a radar dish, engine intakes, and
other scattering centers as shown in Figure 1.3. The dimension transverse
to the radar LOS is called the cross range. Because the Doppler shift of a
scatterer on a target is proportional to the cross range of the scatterer by a
scaling factor, the projection of the target reflectivity distribution on the
cross-range dimension can be obtained from the distribution of Doppler
shifts, called the Doppler profile. With high-resolution Doppler profiles, the
locations of strong scatterers and the target’s extents in the Doppler dimension
can also be obtained as illustrated in Figure 1.4. By combining range profiles
and Doppler profiles, a two-dimensional (2D) radar image may be generated
[9–12]. A radar image is a spatial distribution of the target’s reflectivity
mapped onto a range and Doppler plane. A range-Doppler image can be
converted to a range and cross-range image if we have accurate knowledge
of the scaling factor, which is determined by the rotation rate and the
wavelength of the transmitted signal [11, 12].

An important factor of the image quality is its resolution (i.e., the
ability to separate closely spaced scatterers in range and in cross range). The
resolution along the radar LOS to the target is called the range (or down-
range) resolution. The resolution transverse to the radar LOS is called the
cross-range resolution. The minimum distance in the range Dr r , and in the
cross range Dr cr , by which two point-scatterers can be separated, is the
resolution of the image. A rectangle with sides Dr r and Dr cr is called a
resolution cell. Range resolution is determined by the frequency bandwidth
of the transmitter and the receiver. For an X-band radar operating at
10,000 MHz frequency, a bandwidth of 5% of the radar operation frequency
(i.e., 500 MHz) can yield 1-ft range resolution. To obtain high cross-range

Figure 1.3 Radar range profile of an aircraft.
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Figure 1.4 Doppler profile of an aircraft.

resolution a large antenna aperture is required. Usually, a synthetic aperture
is utilized to synthesize a large antenna aperture. Synthetic aperture processing
coherently combines signals obtained from sequences of small apertures at
different aspect angles of a target to emulate the result that would be obtained
from a large antenna aperture [10, 11].

Coherent processing maintains the relative phases of successive pulses.
Thus, the phase from pulse to pulse is preserved and a phase correction can
be applied to the returned signals to make them coherent for successive
interpulse periods. If radar returns are processed coherently, the processed
data retains both the amplitude and the phase information about the target.
The amplitude is related to the radar cross section (a measure of the ability
to reflect electromagnetic waves) of the target and the phase is related to
the radial velocity of the target.

Imaging of moving targets using radar has been a major challenge.
Techniques for high-resolution radar imaging are based on synthetic aperture
processing described above. As long as there is a relative motion between
the radar and the target, a synthetic aperture can be formed. A target can
be considered as a set of individual point-scatterers, each with a radial velocity
or Doppler frequency shift to the radar. Thus, the distribution of the radar
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reflectivity of the target can be measured by the Doppler frequency spectrum
at each range gate, called the range bin or range cell, by taking the Fourier
transform over the coherent processing interval (CPI) or imaging integration
time. To use the Fourier transform properly, it is assumed that the frequency
contents of the analyzed signal must be time-invariant. With this assumption,
a long observation time results in high Doppler resolution. However, when
the target moves, Doppler frequency shifts are time varying and the assump-
tion of time-invariant Doppler frequency shifts is no longer valid. Thus, the
Doppler spectrum becomes smeared, degrading the cross-range resolution,
and the radar image becomes blurred. There are many methods, some called
autofocusing and others called motion-compensation, for solving the problem
of Doppler smearing and image blurring [13–22]. Most methods are Fourier-
based approaches that attempt to flatten the Doppler spectra of individual
scatterers by using sophisticated preprocessing approaches. Others use mod-
ern spectral analysis to achieve sharper images with shorter data samples
[23–26]. In Chapter 5, we will introduce an image formation based on time-
frequency transforms which can resolve the image blurring problem without
resorting to sophisticated preprocessing algorithms. Time-frequency trans-
form is a useful tool for radar imaging and signal analysis. In Chapters 3
through 8, we will introduce time-frequency transforms for detecting weak
signals buried in noise, for analyzing radar back-scattering, for forming an
image of maneuvering targets, for motion compensation, for moving target
detection, and for micro-Doppler analysis.

In this chapter, we introduce basic concepts on radar back-scattering
in Section 1.1. Then, we describe radar signals, noise, and the SNR in
Section 1.2. In Section 1.3 we discuss the radar ambiguity function and
matched filter, which is considered as a basic mathematical tool for signal
design, analysis, and processing. In Section 1.4, we briefly introduce synthetic
aperture radar imaging and its resolutions.

1.1 Electromagnetic Back-Scattering from Targets

The physical mechanism by which a transmitted radar signal is converted
into a reflected signal due to the electromagnetic scattering from a target is
a fundamental issue in understanding radar operation. This issue impacts
the design of the radar waveform and its associated signal and image processing
algorithms. It also determines how much of the target features can be extracted
by the radar system. Most operational radars operate in the monostatic mode
(i.e., the transmitter and the receiver are located physically at the same site).
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Consequently, even though the target scatters the incident radar energy in
all directions, only the energy that is scattered back to the radar transceiver
is of interest (Figure 1.1). This is usually referred to as the back-scattered
energy.

As one might expect, the electromagnetic back-scattering mechanisms
are governed by the equations of Maxwell. They can be quite complicated
for complex targets. A very simple model, however, called the point-scatterer
model, has been used successfully in the radar community to approximately
describe the behavior of back-scattered radar signal [27–30]. In this model,
it is assumed that the scattering from a complex target can be approximately
modeled as if it is emanating from a collection of localized scattering centers
on the target. Therefore, the resulting relationship between the transmitted
signal sT (t ) and the received signal sR (t ) can be written simply as

sR (t ) = ∑
n

An sTSt −
2Rn

c D (1.4)

where An represents the strength of the n th scattering center and Rn represents
its location along the radar LOS or the so-called down-range direction. For
a target that is stationary with respect to the radar, no Doppler frequency
shift is involved in (1.4). Clearly, if the transmitted signal is a narrow pulse,
then based on the point-scatterer model the reflected signal is comprised of
a collection of pulses where the pulse locations indicate the spatial positions
of the scattering centers on the target along the down-range direction. The
strengths of the pulses are proportional to the strengths of the scattering
centers. Thus, the received signal becomes a one-dimensional (1D) mapping
of the prominent scattering centers on the target in the down-range direction.
This is known as the range profile of the target and is an important feature
space in radar signature diagnostic and target recognition applications [5].
For instance, the total extent of the range profile provides information on
the length of the target along the radar LOS. The strong peaks in the range
profile give the specific range locations of the strong scattering centers.

While the point-scatterer model is consistent with phenomenological
observations, it can also be established more rigorously from first-principle
electromagnetic theory. This is accomplished through the high-frequency
approximation to Maxwell’s equations, or ray optics. Through the early
works of Luneburg and Kline [31] and Keller [32], and later Kouyoumjian
and Pathak [33] and Lee and Deschamps [34], it was shown that the
electromagnetic scattering from a complex target could be described by a
set of highly localized ray phenomena. Each ray mechanism is attributable
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to a reflection or diffraction point on the target. For example, a single
specular reflection point is used to describe the scattering from a smooth,
curved surface. A diffraction point is used to describe the scattering from a
sharp edge or a corner. Furthermore, the associated scattering amplitudes
for a number of canonical configurations have been derived in closed form
by electromagnetics researchers. Today, this knowledge base is generally
called the geometrical theory of diffraction (GTD), which is a term first
coined by Keller [32]. For radar applications, GTD provides the theoretical
framework for the point-scatterer model. That is, the reflection and diffrac-
tion points on a target and their associated scattering amplitudes give rise
to the point-scatterers observed in the actual range profiles and radar imagery.

In addition to providing a basis for the point-scatterer model, GTD
is an important theory that allows us to examine the limits of the point-
scatterer model. Since GTD was originally derived for electromagnetic fields
in the frequency domain, we rewrite the point-scatterer model in (1.4) in
the angular frequency domain v = 2p f as

SR (v ) = ST (v )∑
n

An expH−jv
2Rn

c J (1.5)

where ST (v ) and SR (v ) are Fourier transforms of sT (t ) and sR (t ), respec-
tively. Note that in the above expression, each scattering mechanism has a
constant amplitude and linear phase variation as a function of frequency.
As a result, the incident pulse shape is fully preserved as it is scattered by
each scattering center. Any scattering mechanism that satisfies the constant
amplitude and linear phase condition above is usually called a ‘‘nondispersive’’
mechanism. Real scattering mechanisms, however, do in fact deviate from
the idealized point-scatterer model. For instance, the scattering amplitude
An derived from GTD for canonical conducting structures is, in general,
weakly frequency dependent [35]. It has been shown that the frequency
dependence of An is in the form of v g n where gn takes on half-integer
values depending on the scatterer shape. Similarly, the phase of the individual
exponential terms in (1.5) may exhibit nonlinear behavior as a function of
frequency. This can occur in scatterers containing nonperfectly conducting
materials or guided structures, such as inlet ducts, where the propagation of
the electromagnetic energy differs from that in free space. As a result of such
frequency dependencies that deviate from the idealized point-scatterer model,
the return pulses in range are no longer identical in shape to the incident
pulse. In general, they become much more spread out in range after the
scattering process. When this occurs, we term the scattering process a disper-
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sive one. The interpretation of dispersive scattering mechanisms in range is
more difficult. In Chapter 4, we shall examine how dispersive features can
be better revealed by time-frequency transforms.

1.2 Radar Signal and Noise

1.2.1 Signal Waveforms

In high range-resolution radar systems, in order to achieve high range resolu-
tion, signals having wide bandwidth are required. Widely used wideband
signals include linear frequency modulated (LFM) signals and stepped fre-
quency (SF) signals.

The LFM signal linearly changes its instantaneous carrier frequency
within a single pulse as shown in Figure 1.5(a). The LFM signal with a
Gaussian envelope can be expressed as

s LFM (t ) = (a /p )1/4 exp{−a t2/2} exp{ j2p [ f0 + (h /2)t ]t } (1.6)

where f0 is the carrier frequency, h is the frequency-changing rate or chirp
rate, and a determines the width of the Gaussian envelope.

The frequency spectrum of the LFM signal with a Gaussian envelope
shown in Figure 1.5(b) can be derived as [36]

SLFM ( f ) =
(a /p )1/4

(a − jh )1/2 expH−
2p2a ( f − f0)2

(a2 + h2)
− j

2p2h ( f − f0)2

(a2 + h2) J
(1.7)

Unlike the LFM signal, the SF signal achieves its wide bandwidth by
sequentially changing the carrier frequency step-by-step over a number of
pulses [Figure 1.6(a)]. Thus, the SF signal can be described by a sequence
of pulses with increased carrier frequencies from one pulse to the next. The
stepped carrier frequency can be expressed as

fm = f0 + (m − 1)D f (m = 1, 2, . . . , M ) (1.8)

where D f is the frequency step. The total bandwidth of the SF signal,
MD f , determines the radar range resolution. Because pulses are transmitted
with a given pulse repetition interval (PRI) TPRI , the SF signal can be
expressed as
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Figure 1.5 (a) An LFM waveform, and (b) its frequency spectrum.

sSF (t ) = ∑
M−1

m=0
rect (t − mTPRI , T ) exp{−j2p ( f0 + mD f )t } (1.9)

where the rectangular pulse is defined as

rect (t , T ) = H1 | t | ≤ T /2

0 | t | > T /2
(1.10)

where T ≤ TPRI is the width of the rectangular pulse in time that determines
the duty cycle of the pulse.

The Fourier transform of the rectangular pulse is FT {rect (t , T )} =
T sinc( fT ), where sinc(?) is the sinc function defined by sinc(x ) =
sin(px )/(px ) (for x ≠ 0) and sinc(x ) = 1 (for x = 0). Then, the Fourier
transform of the time-shifted rectangular pulse rect (t − t , T ) becomes
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Figure 1.6 (a) An SF waveform, and (b) its frequency spectrum.

FT {rect (t − t , T )} = T sinc( fT ) exp{−j2p ft } (1.11)

where t is the time-shift. Therefore, the frequency spectrum of the SF signal
can be derived by taking the Fourier transform of the signal sSF (t ):

SSF ( f ) = ∑
M−1

m=0
T sinc[( f − fm )T ] exp{−j2p ( f − fm )mTPRI }

(1.12)

where fm = f0 + mD f is the carrier frequency of the m th pulse. Figure
1.6(b) shows the frequency spectrum of the SF signal.

1.2.2 The SNR

Generally, SNR means the ratio of the intensity of the signal to the average
intensity of the noise. The higher the SNR, the easier the signal detection.
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There are two types of definitions of SNR: the average power SNR and the
instantaneous power SNR.

The average power SNR is defined as the ratio of the average signal
power to the average noise power. The average power is defined by

PS =
1
TE

T

0

s2(t )dt (1.13)

where T is the time duration of the signal s (t ). The average noise power is
defined by

PN = E
∞

−∞

(rn − mean {rn })2p (rn )drn (1.14)

where rn = {n (t )} is a random noise process and p (rn ) is the probability
density function of the random noise process rn . Thus, the SNR becomes

SNRaverage =
PS
PN

(1.15)

For an additive white Gaussian noise (i.e., uniform power spectrum
and Gaussian amplitude distribution) with zero-mean and variance s2

rn , the
average noise power is PN = s2

rn , and the average power SNR becomes

SNRaverage =

1
TE

T

0

s2(t )dt

s2
rn

(1.16)

The instantaneous power SNR is defined as the ratio of the instanta-
neous signal power to the average noise power:

SNR instant =
P instant

s2
rn

(1.17)
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where instantaneous signal power is P instant = s2(t ). These two definitions
of SNR are only suitable for linear systems because they do not take into
account cross-terms between the signal and the noise. The matched filter
introduced in Section 1.3.2 is based on the definition of the instantaneous
power SNR to derive a linear system that outputs the maximum instantaneous
peak power of the signal.

1.3 Radar Ambiguity Function and Matched Filter

1.3.1 Radar Ambiguity Function

Radar ambiguity function, first introduced by Woodward in 1953 [37], is
a basic mathematical tool for signal design and analysis. It can be used for
characterizing radar performance in target resolution and clutter rejection.
The ambiguity function of a signal s (t ) is a 2D function in Doppler frequency
shift fD and time-delay t and is defined as follows [38]:

x S (t , fD ) = E
∞

−∞

s (t )s*(t − t ) exp{ j2p fD t }dt (1.18)

= E
∞

−∞

S*( f )S ( f − fD ) exp{ j2p ft }df

where the asterisk refers to the conjugate, and S ( f ) is the signal frequency
spectrum. A high value of the ambiguity function indicates that it is difficult
to resolve two nearby targets whose differences in the time delay and in the
Doppler frequency shift are t and fD , respectively.

The ambiguity function can also be defined in a symmetrical form

x s (t , fD ) = E
∞

−∞

s (t + t /2)s*(t − t /2) exp{ j2p fD t }dt (1.19)

= E
∞

−∞

S*( f + fD /2)S ( f − fD /2) exp{ j2p ft }df
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From the above definition, we can easily see that the ambiguity function
is a symmetric function:

x s (t , fD ) = x*s (−t , −fD ) (1.20)

and its peak value is always at the center of the origin:

| x s (t , fD ) | ≤ | x s (0, 0) | (1.21)

The peak of the ambiguity function x s (0, 0) means that it is impossible
to resolve two nearby targets if their differences in the time delay and the
Doppler frequency shift are all zeros. An ideal ambiguity function is a
thumbtack-type function which has a peak value at (t = 0, fD = 0) and is
near zero elsewhere. With the thumbtack-type ambiguity function, this means
that two nearby targets can be perfectly resolved if their differences in the
time delay and the Doppler frequency shift are not zeros. Of course, if
t = 0 and fD = 0, the ambiguity function has an infinite peak that makes
two targets ambiguous.

Other properties of the ambiguity function include the following:

1. The ambiguity function of a scaled signal s (a t ) is

s ′(t ) = s (a t ) ⇒ x s′ (t , fD ) =
1

|a | x sSat ,
fD
a D (1.22)

2. The ambiguity function of a time-shifted signal s (t − Dt ) is

s ′(t ) = s (t − Dt ) ⇒ x s′ (t , fD ) = x s (t , fD ) exp{−j2p fDDt }
(1.23)

3. The ambiguity function of a frequency-modulated signal
s (t ) exp{ j2p ft } is

s ′(t ) = s (t ) exp{ j2p ft } ⇒ x s′ (t , fD ) = x s (t , fD ) exp{−j2p ft }
(1.24)

If we set the Doppler shift to zero, the ambiguity function becomes
the autocorrelation function of the signal s (t )
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x (t , 0) = E
∞

−∞

s (t )s*(t − t )dt (1.25)

For a rectangular pulse rect (t , T ) defined in (1.10), the ambiguity
function as shown in Figure 1.7 is

x rect (t , fD ) = E
∞

−∞

rect (t + t /2)rect*(t − t /2) exp{ j2p fD t }dt

= E
(T−t )/2

−(T−t )/2

exp{ j2p fD t }dt (1.26)

= H (T − |t | ) sinc[ fD (T − |t | )] for |t | ≤ T

0 for |t | > T

For a Gaussian pulse

g (t ) = e −at2
(1.27)

the ambiguity function is also a Gaussian type:

Figure 1.7 Ambiguity function of a rectangular pulse.
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xG (t , fD ) =
1

√2
exp{−a (t2 + f 2

D )/2} (1.28)

For an LFM pulse

LFM (t ) =
1

√T
rectSt − T /2

T D exp{ j (2p f0t + ph t2} (1.29)

the ambiguity function as shown in Figure 1.8 becomes

x s (t , fD ) = H (T − |t | ) sinc[( fD − ht )(T − |t | )] |t | ≤ T

0 otherwise
(1.30)

For an SF signal described in (1.9), its ambiguity function is shown
in Figure 1.9, where the number of steps M = 10. The SF signal in the time
domain and its time-frequency distribution are shown in Figures 1.9(a, b),
respectively. Figures 1.9(c, d) are a surface plot and a contour plot of
the ambiguity function of the SF signal, respectively. The details of the
mathematical expression for the ambiguity function of the SF signal can be
found in [39].

Figure 1.8 Ambiguity function of an LFM pulse.
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Figure 1.9 Ambiguity function of an SF signal: (a) SF signal; (b) time-frequency distribution;
(c) surface of the ambiguity function; and (d) contour plot of the ambiguity
function.

1.3.2 Matched Filter

A matched filter [40, 41] is a filter that provides the maximum output SNR
when the signal is corrupted by white Gaussian noise. White noise means
the power spectrum of the noise Pn ( f ) is uniformly distributed over the
entire frequency domain (−∞ < f < ∞) (i.e., Pn ( f ) = N0 /2), and Gaussian
noise indicates that the probability density function of the amplitude of the
noise is a Gaussian distribution. Given a signal s (t ) in white Gaussian noise,
the transfer function of the matched filter is the complex conjugate spectrum
of the time-shifted signal s (t + t0) [40]:

H ( f ) = kS*( f ) exp{−j2p ft0} (1.31)

and its impulse response is a mirror function of the input signal:

h (t ) = Hks*(t0 − t ), (t ≥ 0)
0, (t < 0)

(1.32)

where t0 is a predetermined observation time and k is a scaling constant.
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The matched filter has many important properties:

1. Among all linear filters, the matched filter is the only one that can

provide maximum output SNR of 2E /N0, where E = E
∞

−∞

s2(t )dt is

the energy of the signal s (t ), and N0 /2 is the power spectrum density
of the white noise.

2. An optimal filter matched to the signal s (t ) is also optimum to
those signals that share the same waveform but different magnitude
and time delay: s ′(t ) = as (t − t ) because of

H ′( f ) = kS ′*( f ) exp{−j2p ft ′0 }

= akS*( f ) exp{−j2p f (t ′0 − t )} (1.33)

= aH ( f ) exp{−j2p f [t ′0 − (t0 + t )]} = aH ( f )

where t ′0 = t0 + t . A matched filter to the signal s (t ) is, however,
not optimum to those signals that have the same waveform but
different frequency-shift S ′ ( f ) = S ( f + n ). This is because the
transfer function of the matched filter to the frequency-shift signal
is

H ′( f ) = kS*( f + n ) exp{−j2p ft0} (1.34)

3. The matched filter is equivalent to a correlator. Because the impulse
response of the matched filter is a mirror of the input signal, the
output of the matched filter can be expressed as an autocorrelation
function of the signal:

s out (t ) = E
∞

−∞

ks*(t0 − t )s (t − t )dt = kRs (t − t0) (1.35)

4. The output of the matched filter to a signal is the Fourier transform

of the power spectrum |S ( f ) |
2

of that signal:
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s out (t , t0) = ES ( f )[kS*( f ) exp{−j2p ft0}] exp{ j2p ft }df

= EkS ( f )S*( f ) exp{ j2p f (t − t0)}df (1.36)

= kE |S ( f ) |
2

exp{ j2p f (t − t0)}df

At an observation time t0, which must be equal to or greater than the
signal time duration, the output of the matched filter can achieve its maxi-
mum value.

For simplicity, the observation time is selected at the origin t0 = 0.
Then, the response of the matched filter s out (t , t0) in (1.36) and the ambiguity
function x (t , fD ) in (1.18) are related by

s out (t , 0) = x (t , 0) (1.37)

This means that the response of a matched filter can be derived from the
ambiguity function by a cut along the line at fD = 0.

1.3.3 Pulse Compression

For a high range-resolution radar with wideband waveforms, the matched
filter actually functions as a pulse compression filter. For example, given an
LFM signal with its frequency spectrum described in (1.7), according to
(1.36), the output of the matched filter becomes

s out (t , t0) = Ek
Sa

p D
1/2

a − jb
e

−
4p 2a ( f− f 0)2

(a 2 +b 2) e j2p f (t− t 0)df

= k
Sa

p D
1/2

a − jb
e j2p f 0(t− t 0)E e

−
4p 2a

(a 2 +b 2)
f 2

e j2p f (t− t 0)df (1.38)

= k
Sa

p D
1/2

a − jb Sa2 + b2

8p2a
D1/2

e
−

a 2 +b 2

16p 2a
(t− t 0)2

e j2p f 0(t− t 0)
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where we used the formula

E e −Af 2
e j2p f (t− t 0)df =

1

(2A )1/2 e
−

1
4A

(t− t0)2

The matched filter output is plotted in Figure 1.10(b) and has a peak
value at t = t0. As described in (1.36), the output of the matched filter is
the Fourier transform of the power spectrum of the signal. Therefore, for
the purpose of pulse compression, we can either apply a matched filter to
the signal or take the Fourier transform of the power spectrum of that signal
as shown in Figure 1.10(c).

1.4 Synthetic Aperture Radar Imaging

Synthetic aperture radar (SAR), as an airborne or space-borne radar developed
in the early 1950s, provides capabilities in generating radar image with

Figure 1.10 (a) An LFM signal; (b) the response of the matched filter; and (c) the Fourier
transform of the power spectrum of the LFM signal.
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fine features in addition to its position and velocity [10–12]. SAR images
reconstructed from received signals are high-resolution maps of the spatial
distribution of the reflectivity function of stationary surface targets and
terrain. High-range resolution is obtained by using wide bandwidth of the
transmitted waveform, and high cross-range resolution is achieved by coher-
ently processing returned signals from a sequence of small apertures at
different aspect angles to the radar to emulate a large aperture. If the radar
is stationary and the target is moving, the angular motion of the target with
respect to the radar can also be used to generate an image of the target. In
this case, the radar is called an inverse synthetic aperture radar (ISAR) because
it utilizes a geometrically inverse way (i.e., the radar is stationary and the
target is moving) to image the target [9, 13–16]. In ISAR, cross-range
resolution is determined by the Doppler resolution with a scaling factor.
With a high Doppler resolution, differential Doppler shifts of adjacent
scatterers on a target can be observed, and the distribution of the target’s
reflectivity can be obtained through the Doppler frequency spectrum. Con-
ventional methods to obtain Doppler information are based on the Fourier
transform, called the Fourier-based image formation.

1.4.1 Range Profile

With sufficient frequency bandwidth, it is possible to generate a 1D map
of the target along the radar LOS, called the range profile or down-range
profile as mentioned in Section 1.1. Similarly, by observing a target with
relative motion with respect to the radar over a sufficient time interval, it
is possible to generate a 1D cross-range map of the target.

A range profile is a range-compressed back-scattered signal. Since time
delay is related to the distance from the radar to the target, the resulting
radar signal, as a function of time, can be interpreted as a 1D mapping of
the prominent scattering centers on the target along the radar LOS. In simple
targets, a range profile typically consists of a number of distinct peaks that
can be related spatially to the isolated scattering centers on the target.

1.4.2 Range Resolution

Radar range resolution defines the ability of resolving two point-targets
within the same antenna beam, close together in the range domain. Because
the delay-time t of a radar signal returned from a target is related to the
range R by t = 2R /c , the resolution in range is directly related to the resolution
in delay-time. The range or down-range resolution Dr r is determined by
the bandwidth of the transmitted signal BW:
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Dr r =
c

2BW
(1.39)

1.4.3 Cross-Range Resolution

Doppler resolution refers to the ability of resolving two targets in the radial
velocity. The Doppler resolution D fD is related to the coherent integration
time T by

D fD =
1
T

(1.40)

The cross-range resolution Dr cr is determined by the angle extent of
the synthesized apertures during the coherent integration time: Dr cr =

c
2V f0T

, where f0 is the frequency of the transmitted signal and V is the

rotation rate of the target. A longer integration time may provide higher
cross-range resolution, but causes phase-tracking errors, which can degrade
the Doppler resolution and result in image blurring. Because the Doppler
resolution D fD is inversely proportional to the image time T, the cross-
range resolution is proportional to the Doppler resolution with a scaling
factor:

Dr cr = S c
2V f0

DD fD (1.41)

where 2V f0 /c is called the scaling factor.
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2
Time-Frequency Transforms

Since its introduction in the early nineteenth century, the Fourier transform
has become one of the most widely used signal-analysis tools across many
disciplines of science and engineering. The basic idea of the Fourier transform
is that any arbitrary signal (of time, for instance) can always be decomposed
into a set of sinusoids of different frequencies. The Fourier transform is
generated by the process of projecting the signal onto a set of basis functions,
each of which is a sinusoid with a unique frequency. The resulting projection
values form the Fourier transform (or the frequency spectrum) of the original
signal. Its value at a particular frequency is a measure of the similarity of
the signal to the sinusoidal basis at that frequency. Therefore, the frequency
attributes of the signal can be revealed via the Fourier transform. In many
engineering applications, this has proven to be extremely useful in the charac-
terization, interpretation, and identification of signals.

While the Fourier transform is a very useful concept for stationary
signals, many signals encountered in real-world situations have frequency
contents that change over time. The most common example is music, where
the harmonic content of the acoustic signal changes for different notes. In
this case, it is not always best to use simple sinusoids as basis functions
and characterize a signal by its frequency spectrum. Joint time-frequency
transforms were developed for the purpose of characterizing the time-varying
frequency content of a signal. The best-known time-frequency representation
of a time signal dates back to Gabor [1] and is known as the short-time
Fourier transform (STFT). It is basically a moving window Fourier transform.
By examining the frequency content of the signal as the time window is

25
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moved, a 2D time-frequency distribution called the spectrogram is generated.
The spectrogram contains information on the frequency content of the signal
at different time instances. One well-known drawback of the STFT is the
resolution limit imposed by the window function. A shorter time window
results in better time resolution, but leads to worse frequency resolution,
and vice versa. To overcome the resolution limit of the STFT, a wealth of
alternative time-frequency representations have been proposed.

In this chapter, we provide an overview of various time-frequency
transforms developed by researchers in the signal processing community.
They are broadly divided into two classes: linear time-frequency transforms
and quadratic (or bilinear) transforms. In Section 2.1, we first discuss linear
time-frequency transforms. The discussion commences with the STFT and
moves on to two other linear transforms, the continuous wavelet transform
(CWT) and the adaptive time-frequency representation. In Section 2.2, we
discuss quadratic time-frequency transforms. We begin with the Wigner-
Ville distribution (WVD) and discuss Cohen’s class and the time-frequency
distribution series (TFDS). The main purpose of this chapter is to lay the
groundwork for subsequent chapters on radar applications of time-frequency
transforms. Emphasis is therefore placed on the application perspective. More
detailed theoretical discussions on time-frequency transforms can be found
in two excellent texts by Cohen [2] and Qian and Chen [3].

2.1 Linear Time-Frequency Transforms

We begin our discussion of linear time-frequency transforms with a review
of the Fourier transform. The Fourier transform of a time signal s (t ) is
defined as

S (v ) = E
∞

−∞

s (t ) exp{−jv t }dt (2.1)

where v = 2p f is the angular frequency. In the context of functional
expansion, S (v ) can be interpreted as the projection of the signal onto a
complex exponential function exp{ jv t } at angular frequency v . Since the
set of exponentials forms an orthogonal basis set, the original function can
be constructed from the projection values by the process of

s (t ) =
1

2pE
∞

−∞

S (v ) exp{ jv t }dv (2.2)
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which is the inverse Fourier transform of S (v ). A well-known property of
the Fourier transform pair s (t ) and S (v ) is the uncertainty principle. It
states that the time duration Dt of s (t ) and the frequency bandwidth Dv of
S (v ) are related by

DtDv ≥
1
2

(2.3)

where

Dt = 3E
∞

−∞

(t − m t )
2 | s (t ) |

2
dt

E
∞

−∞

| s (t ) |
2
dt 4

1/2

Dv = 3E
∞

−∞

(v − m v )2 |S (v ) |
2
dv

E
∞

−∞

|S (v ) |
2
dv 4

1/2

and the mean time m t and mean frequency m v are defined as

m t =

E
∞

−∞

t | s (t ) |
2
dt

E
∞

−∞

| s (t ) |
2
dt

m v =

E
∞

−∞

v |S (v ) |
2
dv

E
∞

−∞

|S (v ) |
2
dv
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Thus, the larger the time duration of s (t ), the smaller the frequency
bandwidth of S (v ). Conversely, the larger the frequency bandwidth of S (v ),
the shorter the time duration of s (t ).

When we use (2.1) to estimate the frequency spectrum of a signal, we
assume that the frequency content of the signal is relatively stable during
the observation time interval. If the frequency content changes with time,
it is not possible to monitor clearly how this variation takes place as a
function of time. The reason can be attributed to the nature of the complex
sinusoidal basis, which is of infinite duration in time. While the frequency
spectrum can still be used to uniquely represent the signal, it does not
adequately reflect the actual characteristics of the signal. In the following
three subsections, three linear time-frequency transforms (viz., STFT, the
CWT, and the adaptive time-frequency representation) are presented. They
can be considered as a generalization of the Fourier transform with alternative
basis sets that can better reflect the time-varying nature of the signal frequency
spectrum.

2.1.1 The STFT

The most standard approach to analyze a signal with time-varying frequency
content is to split the time-domain signal into many segments, and then
take the Fourier transform of each segment (see Figure 2.1). This is known
as the STFT operation and is defined as

STFT (t , v ) = E s (t ′ )w (t ′ − t ) exp{−jv t ′ }dt ′ (2.4)

This operation (2.4) differs from the Fourier transform only by the
presence of a window function w (t ). As the name implies, the STFT is
generated by taking the Fourier transform of smaller durations of the original
data. Alternatively, we can interpret the STFT as the projection of the
function s (t ′ ) onto a set of bases w*(t ′ − t ) exp{ jv t ′ } with parameters t
and v . Since the bases are no longer of infinite extent in time, it is possible
to monitor how the signal frequency spectrum varies as a function of time.
This is accomplished by the translation of the window as a function of time
t , resulting in a 2D joint time-frequency representation STFT (t , v ) of the
original time signal. The magnitude display |STFT (t , v ) | is called the
spectrogram of the signal. It shows how the frequency spectrum (i.e., one
vertical column of the spectrogram) varies as a function of the horizontal
time axis.
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Figure 2.1 Illustration of the STFT.

The definition of the STFT can also be expressed in the frequency
domain by manipulating (2.4), with the result

STFT (t , v ) =
1

2p
exp{−jv t }ES (v ′ )W (v − v ′ ) exp{ jv ′t }dv ′ (2.5)

Here W (v ) is the Fourier transform of w (t ). The dual relationship
between (2.4) and (2.5)1 is apparent (i.e., the time-frequency representation
can be generated via a moving window in time or a moving window in
frequency). In addition, we make the following observations: (1) Signal
components with durations shorter than the duration of the window will
tend to get smeared out [i.e., the resolution in the time domain is limited
by the width of the window w (t )]. Similarly, the resolution in the frequency
domain is limited by the width of the frequency window W (v ). (2) The
window width in time and the window width in frequency are inversely
proportional to each other by the uncertainty principle. Therefore, good
resolution in time (small time window) necessarily implies poor resolution
in frequency (large frequency window). Conversely, good resolution in fre-

1. Equation (2.5) has also been referred to as the running-window Fourier transform [4].
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quency implies poor resolution in time. (3) The window width in each
domain remains fixed as it is translated. This results in a fixed resolution
across the entire time-frequency plane. Figure 2.2 shows the basis functions
of the STFT and the resulting fixed-resolution cells in the time-frequency
plane.

So far, we have not discussed the specific shape of the window function.
In general, to cut down on sidelobe interference in the spectrogram, the
window function should taper to zero smoothly. Examples of window func-
tions include Hamming, Hanning, Kaiser-Bessel, and Gaussian windows.
An STFT using a Gaussian window function is sometimes called the Gabor
transform [1]. If we let

w (t ) =
1

p1/4√s
expH−

t2

2s2J (2.6)

the corresponding frequency window is

W (v ) = (2s )1/2p1/4 expH−
s2v2

2 J (2.7)

From (2.3), we have m t = 0, m v = 0, Dt = s /√2, Dv = 1/(√2s ), and
DtDv = 1/2. We can see that the uncertainty equality in (2.3) holds for the

Figure 2.2 Basis functions and the resulting fixed-resolution cells of the STFT.
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Gaussian function. Therefore, the Gaussian window function achieves the
best time-frequency product among all the possible window functions.

Figure 2.3 shows an example of a signal containing four nonoverlapping,
finite-duration sinusoids. Figure 2.3(a) is the time-domain waveform and
Figure 2.3(b) shows its corresponding frequency spectrum. Although the
four frequencies are well resolved, their time duration information cannot
be seen in the frequency domain. Figure 2.3(c) is the STFT spectrogram
generated using a Hanning window of 32 points. It shows both the frequency
locations and time durations of the four signal components. Figure 2.3(d)
is the spectrogram obtained by using a longer time window of 128 points.
As expected, a longer time window results in better frequency localization
in the time-frequency plane, at the expense of worse time resolution. These
results (as well as subsequent examples in this chapter) were generated using
the demonstration version of the Joint Time-Frequency Analyzer developed
by the National Instruments Corporation [3].

Figure 2.3 (a) A test signal in time consisting of four nonoverlapping, finite-duration
sinusoids; (b) its frequency spectrum obtained via the Fourier transform;
(c) its spectrogram obtained using STFT with a Hanning window of width 32
points; and (d) its spectrogram with a window of width 128 points. (Plots
obtained using the demonstration version of the Joint Time-Frequency Analyzer
developed by the National Instruments Corporation [3].)
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2.1.2 The CWT

As described in the last section, the spectrogram generated by the STFT is
limited in resolution by the extent of the sliding window function. A smaller
time window results in better time resolution, but leads to worse frequency
resolution, and vice versa. Contrary to the fixed resolution of the STFT,
the wavelet transform is a time-frequency representation capable of achieving
variable resolution in one domain (either time or frequency) and multiresolu-
tion in the other domain [5–8]. The CWT of a signal s (t ) can be defined
as

CWT (t , v ) = S v
v0
D1/2Es (t ′ )c*S v

v0
(t ′ − t )Ddt ′ (2.8)

c (?) is usually termed the ‘‘mother wavelet’’ in wavelet theory. The ratio
(v0 /v ) is the scale parameter and the resulting 2D magnitude display of
the above expression is called the scalogram. Let us assume that the mother
wavelet is centered at time zero and oscillates at frequency v0. Essentially,
(2.8) can be interpreted as a decomposition of the signal s (t ′ ) into a family
of shifted and dilated wavelets c [(v /v0)(t ′ − t )]. The wavelet basis function
c [(v /v0)(t ′ − t )] has variable width according to v at each time t . The
c [(v /v0)(t ′ − t )] is wide for small v and narrow for large v . By shifting
c (t ′ ) at a fixed parameter v , the (v0 /v )-scale mechanisms in the time
response s (t ′ ) can be extracted and localized. Alternatively, by dilating c (t ′ )
at a fixed t , all of the multiscale events of s (t ′ ) at t can be analyzed according
to the scale parameter (v0 /v ). This is the multiresolution property of the
wavelet transform and is an advantage over the STFT for analyzing multiscale
signals.

The wavelet transform can also be carried out on the inverse Fourier
transform S (v ) of the signal s (t )

CWT (t , v ) =
(v0 /v )1/2

2p ES (v ′ )C*Sv0
v

v ′D exp{ jv ′t }dv ′ (2.9)

where C(v ′ ) is the Fourier transform of c (t ′ ). Notice that (2.9) is essentially
the Fourier transform of S (v ′ )C*[(v0 /v )v ′ ]. By comparing (2.9) and
(2.5), we observe that C*(v ′ ) is similar to the frequency window function
W (v ′ ) in the running window Fourier transform. However, C(v ′ ) must
satisfy the ‘‘admissibility condition’’ in wavelet theory, namely, C(0) = 0,
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(i.e., it contains no dc components). To satisfy this condition, C(v ′ ) can
be thought of as a shifted window function with a center frequency of v0.
By changing v , C[(v0 /v )v ′ ] is shifted to v ′ and the width of the window
is dilated by the factor (v /v0). The ratio between the window width and
the window center (or the Q-factor of the window function) remains fixed
for all v values. This is the constant-Q property of the wavelet filter and is
in contrast to the STFT where the window width does not change as it is
being shifted.

Figure 2.4 illustrates the basis functions in the CWT and the resulting
time-frequency grid. Note that both the CWT and the STFT can be interpre-
ted as the decomposition of the time signal s (t ) into a family of basis functions
that determine the properties of the transform. The STFT and the CWT
are similar to each other in that they both use finite basis functions. This
is in contrast to the Fourier transform, which uses bases of infinite extent.
As is shown in Figure 2.4, however, the width of the basis function in the
CWT changes according to the frequency parameter, leading to variable
resolution of the time-frequency plane.

2.1.3 Adaptive Time-Frequency Representation

Wavelet use is a step toward variable resolution in the time-frequency plane.
However, it is still rather rigid in its particular form of the time-frequency

Figure 2.4 Basis functions and the resulting variable-resolution cells of the CWT.
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grid. More flexible resolution in the time-frequency plane to accommodate
components of the signal with different resolutions is sometimes desirable.
Several signal-adaptive time-frequency representations have been proposed
in the literature for this purpose, the best known of which are the adaptive
Gaussian representation [9] and the matching pursuit algorithm [10]. The
adaptive spectrogram (ADS), which we will discuss here, uses adaptive nor-
malized Gaussian functions to represent the signal. In the algorithm, the
time and frequency resolutions, as well as the time-frequency centers, are
adjusted to best match the signal. The objective of this method is to expand a
signal s (t ) in terms of normalized Gaussian functions hp (t ) with an adjustable
standard deviation s p and a time-frequency center (t p , v p ) as follows:

s (t ) = ∑
∞

p=1
Bp hp (t ) (2.10)

where

hp (t ) = (ps2
p )−1/4 expH−

(t − t p )2

2s2
p

J exp{ jv p t } (2.11)

Note that the modulated Gaussian basis has a dual form in its Fourier
transform representation

Hp (v ) = (p (1/2ps p )2)−1/4 expH−
(v − v p )2

2(1/s p )2 J exp{−j (v − v p )t p }

(2.12)

Therefore, these basis functions have a time-frequency extent given by
s p and (1/s p ), respectively (see Figure 2.5).

The coefficients Bp are found one at a time by an iterative procedure.
We begin at the stage p = 1 and choose the parameters s p , t p , and v p such
that hp (t ) is the basis with the maximum projection onto the signal

Bp = max
sp , tp ,vp

E s p−1(t )hp*(t )dt (2.13)

where s0(t ) = s (t ). For p > 1, s p (t ) is the remainder after the orthogonal
projection of s p−1(t ) onto hp (t ) has been removed from the signal
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Figure 2.5 Time-frequency representation of a modulated Gaussian basis function cen-
tered at (t p , v p ) with standard deviation s p . (Source: [11]  1997 IEEE.)

s p (t ) = s p−1(t ) − Bp (t )hp (t ) (2.14)

This procedure is iterated to generate as many coefficients as needed
to accurately represent the original signal.

Several comments can be made about the adaptive Gaussian representa-
tion. First, it can be shown that the norm of the residue monotonically
decreases and converges to zero. Therefore adding a new term in the series
does not affect the previously selected parameters. Second, because this
representation is adaptive, it will generally be concentrated in a very small
subspace. As a result, we can use a finite summation of the terms in (2.10)
to approximate the signal with a small residual error. Also, since random
noise is in general distributed uniformly in the entire time-frequency space,
this subspace representation actually increases the signal-to-noise ratio.
(Chapter 3 discusses the denoising issue in detail.) Finally, the major difficulty
in implementing this algorithm is the determination of the optimal elemen-
tary function at each stage. One implementation strategy is to start with a
large s p and scan the data in frequency and time for a peak. We then divide
s p by two and find the new peak. This procedure is continued until the
standard deviation is small enough (as shown in Figure 2.6). We then select
the highest peak and extract the residual using (2.14). It should be pointed
out that the fast Fourier transform can be used during this search procedure
to obtain the coefficients for all the frequency centers at once, speeding up
a search that would otherwise be very time consuming.

The result of applying the adaptive Gaussian extraction can be effectively
displayed in the time-frequency plane using the so-called ADS:
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Figure 2.6 Illustration of the search strategy for the adaptive Gaussian representation:
(1) start with large s basis and locate the time-frequency position of the peak;
(2) divide s and the search region by two and repeat the search; and (3)
repeat this procedure until the highest peak is found. (Source: [11]  1997
IEEE.)

ADS (t , v ) = 2∑
p

|Bp |
2

expF−
(t − t p )2

s2
p

− s2
p (v − v p )2G (2.15)

This representation is obtained by calculating the WVD (to be discussed
in Section 2.2.1) of (2.10) and then deleting the cross terms. It can be shown
that the energy contained in the ADS is identical to the energy contained
in the signal. Therefore it can be considered as a signal energy distribution
in the time-frequency domain. It is also nonnegative, free of cross-term
interference, and of high resolution. Figure 2.7 shows the ADS of the test
signal shown in Figure 2.3(a).

Further extension of the Gaussian basis functions to include other
higher-order phase terms such as chirps have also been reported in [12, 13].

2.2 Bilinear Time-Frequency Transforms
The power spectrum of a signal s (t ) is the magnitude square of its Fourier
transform, |S (v ) |2. It can also be expressed as the Fourier transform of the
autocorrelation function of s (t )
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Figure 2.7 The ADS of the test signal with four nonoverlapping, finite-duration sinusoids.

|S (v ) |2 = ER (t ′ )e −jv t ′dt ′ (2.16)

where the autocorrelation function is given by

R (t ′ ) = E s (t )s*(t − t ′ )dt (2.17)

The power spectrum indicates how the signal energy is distributed in
the frequency domain. While the Fourier transform S (v ) is a linear function
of s (t ), the power spectrum is a quadratic function of s (t ). Therefore, time-
frequency distributions derived directly from the Fourier transform, such as
those discussed in Section 2.1, can be classified as linear transforms, while
it is customary to call those distributions derived from the power spectrum
quadratic (or bilinear) time-frequency distributions. The main impetus for
quadratic time-frequency distribution is to define an appropriate time-
dependent power spectrum. In this section, we shall discuss three such time-
frequency transforms, the WVD, Cohen’s class, and the TFDS.

2.2.1 The WVD

The most basic of the quadratic time-frequency representations, the WVD,
was first developed in quantum mechanics by Wigner in 1932 [14] and
later introduced for signal analysis by Ville [15]. In the WVD, a time-
dependent autocorrelation function is chosen as

R (t , t ′ ) = sSt +
t ′
2 Ds*St −

t ′
2 D (2.18)
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The WVD of s (t ) is then defined as the Fourier transform of this
time-dependent autocorrelation function

WVD (t , v ) = E sSt +
t ′
2 Ds*St −

t ′
2 D exp{−jv t ′ }dt ′ (2.19)

The WVD can also be defined based on the Fourier transform of s (t )
as follows:

WVD (t , v ) =
1

2pESSv +
v ′
2 DS*Sv −

v ′
2 D exp{ jv ′t }dv ′

(2.20)

The WVD has a number of desirable properties that make it a good
indicator of how the energy of the signal can be viewed as a function of
time and frequency. First the WVD of any signal is always real. Second, it
satisfies the time marginal condition

1
2pEWVD (t , v )dv = | s (t ) |

2
(2.21)

That is, by summing the time-frequency distribution over all frequen-
cies, we obtain the instantaneous energy of the signal at a particular time
instance. Similarly, the WVD also satisfies the frequency marginal condition
given by

EWVD (t , v )dt = |S (v ) |
2

(2.22)

In this case, by summing the time-frequency distribution over all
time, we obtain the power spectrum of the signal at a particular frequency.
Third, the WVD satisfies the instantaneous frequency property. If s (t ) =
A (t ) exp{ ja (t )}, then the average frequency for a given time t is

m v /t =
EvWVD (t , v )dv

EWVD (t , v )dv

=
d
dt

a (t ) (2.23)
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That is, the mean frequency computed from the WVD is equal to the
derivative of the phase (i.e., the mean instantaneous frequency of the signal).
Similarly, the WVD also satisfies the group delay property. If S (v ) =
B (v ) exp{ jb (v )}, then the group delay for a given v is

m t /v =
E tWVD (t , v )dt

EWVD (t , v )dt
= −2p

d
dv

b (v ) (2.24)

It implies that the mean time computed from the WVD is equal to
the derivative of the spectral phase (i.e., the group delay of the signal).

Although the WVD has many nice properties and gives nearly the best
resolution among all the time-frequency techniques, its main drawback comes
from cross-term interference. Simply put, the WVD of the sum of two
signals is not the sum of their WVDs. If s = s1 + s2, it can be shown that

WVDs (t , v ) = WVDs1
(t , v ) + WVDs2

(t , v ) + 2Re{WVDs1s2
(t , v )}

(2.25)

where the last term is the cross WVD of s1 and s2 given by

WVDs1s2
(t , v ) = E s1St +

t ′
2 Ds2*St −

t ′
2 D exp{−jv t ′ }dt ′ (2.26)

As a result, if a signal contains more than one component in the joint
time-frequency plane, its WVD will contain cross terms that occur halfway
between each pair of autoterms. The magnitude of these oscillatory cross
terms can be twice as large as the autoterms and yet they do not possess
any physical meaning. Figure 2.8 shows an example of a signal containing
four finite-duration sinusoids shown earlier in Figure 2.3(a). We can see
that even though the WVD has very good time-frequency localization, there
are cross-term interference terms between every pair of signal components.
This drawback severely hinders the usefulness of the WVD for detecting
signal characteristics in the time-frequency plane.

2.2.2 Cohen’s Class

In addition to the WVD, a number of bilinear distributions have also been
proposed by researchers for time-frequency signal analysis [16–18]. In 1966,
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Figure 2.8 The WVD of the test signal with four nonoverlapping, finite-duration sinusoids.

Cohen showed that all these existing time-frequency distributions could be
written in a generalized form [19]. Moreover, this general form can be used
to facilitate the design of new time-frequency transforms. This class of
transforms is now known simply as Cohen’s class. We shall describe the
general form of Cohen’s class, followed by two well-known members of the
class for reducing the cross-term interference problem in the WVD.

The general form of Cohen’s class is defined as

C (t , v ) = EE sSu +
t ′
2 Ds*Su −

t ′
2 Df (t − u , t ′ ) exp{−jv t ′ }dudt ′

(2.27)

The Fourier transform of f (t , t ′ ), denoted as F(u, t ′ ), is called the
kernel function. It can easily be seen that if F(u, t ′ ) = 1, then f (t , t ′ ) =
d (t ) and (2.27) reduces to the WVD defined in (2.19). Therefore, the WVD
is a member of Cohen’s class. More generally, other types of kernel functions
can be designed to reduce the cross-term interference problem of the WVD.
Two such time-frequency distributions are the Choi-Williams distribution
(CWD) and the cone-shaped distribution (CSD).

The CWD [20] uses as its kernel function

F(u, t ′ ) = exp{−a (u t ′ )2} (2.28)

Along the u-axis and the t ′-axis, the kernel function is identically one
while away from the two axes, the function decays with the damping con-
trolled by a . The inverse Fourier transform of F(u, t ′ ) is given by
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f (t , t ′ ) =
1

√4pa (t ′ )2
expH−

t2

4a (t ′ )2J (2.29)

and the CWD is defined as

CWD (t , v ) = EE 1

√4pa (t ′ )2
(2.30)

expH−
(t − u )2

4a (t ′ )2JsSu +
t ′
2 Ds*Su −

t ′
2 D exp{−jv t ′ }dudt ′

Note that the kernel function is essentially a low-pass filter in the
u-t ′ plane. It preserves all cross terms that are on the u-axis and t ′-axis. As
a result, the CWD usually contains strong horizontal and vertical cross terms
in the time-frequency plane. Figure 2.9 shows the CWD of the same test
signal containing four finite-duration sinusoids. It preserves the property of
the WVD while reducing cross-term interference.

The CSD was introduced by Zhao, Atlas, and Marks [21]. Its name
comes from the definition of a cone-shaped f (t , t ′ )

f (t , t ′ ) = Hg (t ′ ), | t ′ | ≥ 2 | t |
0 otherwise

(2.31)

which is confined to the region bounded by lines t ′ = 2t and t ′ = −2t . In
this case, the corresponding kernel function is of the form

F(u, t ′ ) = g (t ′ ) | t ′ | sincSu t ′
2 D (2.32)

Figure 2.9 The CWD of the test signal with four nonoverlapping, finite-duration sinusoids.
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For example, if we choose g (t ′ ) = (1/ | t ′ | ) exp{−a (t ′ )2}, then the ker-
nel function is F(u, t ′ ) = exp{−a (t ′ )2} sinc(u t ′ /2). In this case, the kernel
function is one along the u-axis and exp{−a (t ′ )2} along the t ′-axis where
a controls the decay. Figure 2.10 shows the CSD of the same test signal.
Again, the CSD reduces cross-term interference while nearly maintaining
the resolution of the WVD.

2.2.3 The TFDS

Another approach to overcoming the cross-term interference problem of the
WVD is the TFDS, proposed by Qian and Chen [22]. They suggested that
if the WVD can be decomposed into a sum of localized and symmetric
functions, it may be possible to suppress cross-term interference by selecting
only the low-order harmonics. This is accomplished by first decomposing
the original signal into the Gabor expansion

s (t ) = ∑
m

∑
n

Cm ,nhm ,n (t ) (2.33)

where

hm ,n (t ) = (ps2)−1/4 expH(t − mDt )2

2s2 + jnDv tJ (2.34)

are time-shifted and frequency-modulated Gaussian basis functions. In the
above expression, m and Dt are respectively the time sampling index and
time sampling interval, while n and Dv are the sampling index and sampling
interval in frequency. In other words, Cmn represents the STFT of the
function s (t ) using a Gaussian window and evaluated on a sampled grid.

Figure 2.10 The CSD of the test signal with four nonoverlapping, finite-duration sinusoids.
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By taking the WVD of both sides of (2.33), we obtain

WVD (t , v ) = ∑
mn

∑
m ′n ′

Cm ,nC *m ′,n ′ WVDh,h ′ (t , v ) (2.35)

where WVDh,h ′ denotes the WVD between any pair of basis functions and
is available in closed form. Next, the above expression can be regrouped
based on the ‘‘interaction distance’’

D = |m − m ′ | + |n − n ′ | (2.36)

between the pairs of bases (m , n ) and (m ′, n ′ ). This results in what is
termed the TFDS, also called the Gabor spectrogram:

TFDSD (t , v ) = ∑
mn

|Cm ,n |
2
WVDh,h ′ (t , v ) (D = 0 terms)

+ ∑
mn

∑
m ′n ′

Cm ,nC *m ′,n ′ WVDh,h ′ (t , v ) (D = 1 terms)

+ ∑
mn

∑
m ′n ′

Cm ,nC *m ′,n ′ WVDh,h ′ (t , v ) (D = 2 terms)

+ . . . (2.37)

Clearly, if we take all the terms in the series (D = ∞), the right-hand
side of (2.37) converges to the WVD of the original signal. This yields the
best resolution but is plagued by cross-term interference. At the other extreme,
if we take only the self-interaction terms in the series (D = 0), the resulting
right-hand side is equivalent to the spectrogram of the signal using a Gaussian
window function. It has no cross-term interference problem but has the
worst resolution. As the order D increases, we gain in resolution but pay a
price in cross-term interference. It is often possible to balance the resolution
against cross-term interference by adjusting the order D . The optimal value
for D was reported to be around 2 to 4.

Figure 2.11 shows the effect of the order D on the frequency-hopping
signal discussed in earlier examples. For D = 0 [Figure 2.11(a)] the signal
has the least time-frequency resolution, but is devoid of cross-term effects.
Figure 2.11(b, c) show respectively the TFDS for D = 3 and D = 6. We
see that at D = 3 it is possible to capture the most useful information in
the time-frequency plane without the degrading effect of the cross terms.
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Figure 2.11 The TFDS of the test signal with four nonoverlapping, finite-duration sinusoids:
(a) D = 0; (b) D = 3; and (c) D = 6.

In summary, we have described a number of popular time-frequency
distributions in this chapter. The list includes the STFT, the CWT, the
adaptive joint time-frequency representation, the WVD, Cohen’s class, and
the TFDS. These time-frequency transforms will be used in subsequent
chapters of this book for various applications of radar imaging and signal
analysis.
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3
Detection and Extraction of Signal
in Noise

The detection and extraction of an unknown signal in noise are important
issues in radar signal processing. When a signal is severely corrupted by noise
and cannot be observed in either the time domain or the frequency domain,
a transformation whose basis functions are localized in both the time and
the frequency domains, such as the Gabor transform, is very useful for
observing the signal. By taking the time-frequency transform, random noise
tends to spread its energy over the entire time-frequency domain, while
signals often concentrate their energy within limited time intervals and
frequency bands. Thus, signals embedded in noise are much easier to recog-
nize in the joint time-frequency domain.

For the detection and extraction of weak signals in noise, we first
need to detect those coefficients in the joint time-frequency domain that
correspond to the desired signal. Then, we use only these coefficients to
recover the time-domain signal waveform.

To detect the signal’s coefficients, an appropriate threshold should be
set up. If a coefficient is greater than the threshold, it is assigned to the
signal. Otherwise, the coefficient is assigned to noise. An optimal way to
set up the threshold is based on the constant false-alarm rate (CFAR) detection
[1, 2]. In this chapter we extend the CFAR detection to the joint time-
frequency domain. By setting a threshold with CFAR in the time-frequency
domain, we can examine any coefficient to determine whether it belongs to
a signal. Then, the signal can be extracted by taking the inverse time-
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frequency transform using only the detected time-frequency coefficients.
Thus, the signal buried in noise can be detected, its parameters can be
measured, and its signal-to-noise ratio (SNR) can be enhanced.

In Section 3.1, we discuss how time-frequency transforms can be used
for the detection and extraction of signals in noise. Then, in Section 3.2,
we describe the concept of a time-varying frequency filter and demonstrate
an example of the time-varying frequency filtering for a chirp signal. In
Section 3.3, we analyze the SNR improvement by using time-varying fre-
quency filters. Finally, in Sections 3.4 and 3.5, we discuss CFAR detection
and extraction in the joint time-frequency domain.

3.1 Introduction

For signals corrupted by strong background noise, it is usually very difficult
to perform signal detection and parameter estimation in either the time
domain or the frequency domain. However, they may be identified in the
joint time-frequency domain by taking a time-frequency transform as shown
in Figure 3.1, where the time-frequency distribution series described in
Chapter 2 is used. Signal often concentrates its energy within a limited time
interval and a limited frequency band while random noise typically has
energy spread over the time-frequency plane. Consequently, by representing
the signal and noise in the joint time-frequency domain, signal detection
becomes much easier. By applying time-varying frequency filtering, the SNR
can also be enhanced. If we can distinguish those coefficients that belong
to the signal from the ones that belong to the noise, these coefficients can
be utilized to reconstruct the signal simply by taking the inverse time-
frequency transform as shown in Figure 3.2.

To separate the signal coefficients from the noise coefficients, an appro-
priate threshold is needed. However, a fixed threshold is not suitable for
detecting signals in different noise environments because the false-alarm rate
may vary. Thus, an adaptive threshold that keeps a CFAR under various
background noises is the most desirable. Human mental processes normally
apply the CFAR function very well to distinguish useful signals from back-
ground noise and clutter. We will extend the CFAR detection to the joint
time-frequency domain to extract unknown signals in background noise.

3.2 Time-Varying Frequency Filtering

To extract signals in a noisy environment, the conventional approach is
to apply either frequency filtering or time gating. However, the frequency
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Figure 3.1 Signal may be identified in the joint time-frequency domain.

Figure 3.2 Time-varying frequency filtering and the reconstructed signal.
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filtering will not remove noise within the frequency pass-band; and the time
gating cannot remove noise within the gate. As illustrated in Figure 3.3, the
time-varying frequency filter is the one that can remove the noise within its
frequency pass-band and time-gate interval.

Unlike traditional linear frequency filtering that has a time-invariant
frequency response, the time-varying frequency filter has a time-varying
frequency response. Figure 3.4(a) shows a noisy signal in the time domain.

Figure 3.3 Time gating, frequency filtering, and time-varying frequency filtering.

Figure 3.4 Block diagram of a frequency-domain filtering.
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To apply a linear frequency filter to the noisy signal, we first take the Fourier
transform of the noisy signal as shown in Figure 3.4(b), then multiply the
coefficients of the Fourier transform by a desired frequency response function
in Figure 3.4(c) and, finally, take the inverse Fourier transform to obtain a
filtered signal as shown in Figure 3.4(e). Because the Fourier transform has
a one-to-one mapping between the frequency domain and the time domain,
any spectrum in the frequency domain corresponds to a unique signal in
the time domain. Thus, the Fourier transform of the filtered signal in Figure
3.4(f) will have the desired frequency response as shown in Figure 3.3(d).
However, in general, for time-frequency transforms there is no guarantee
that such a one-to-one mapping exists between the time-frequency domain
and the time domain. As illustrated in Figure 3.5, the above statement
implies that the inverse time-frequency transform of the filtered signal shown
in Figure 3.5(f ) does not necessarily fall within the desired time-frequency
region in Figure 3.5(d). Therefore, there is an issue concerning the time-
frequency synthesis. Given a localized region in the time-frequency domain,
how do we find the corresponding signal in the time domain? There are
two approaches for solving this problem. The least-square-solution approach
is to find the time-domain signal that minimizes the square error between
the time-frequency transform of the signal and the desired time-frequency
distribution [4–6]. Another approach proposed in [3] uses an iterative time-
varying filtering as illustrated in Figure 3.6. First, it takes a time-frequency
transform (such as the Gabor transform) of the noisy signal. Then, a desired
time-varying frequency filter is applied to extract those coefficients that
belong to the signal. By taking the inverse time-frequency transform, a time-
frequency-filtered signal can be obtained. This completes the first iteration
of the time-varying filter processing. Then, the same procedure can be applied
to perform further iterations. It was proved in [7] that the first iteration of
the time-varying filtering is exactly the least square solution and that further
iterations will improve the least square solution.

3.3 SNR Improvement in the Time-Frequency Domain

As described in Chapter 1, the SNR is usually defined as the ratio of the
average signal power to the average noise power. For a signal in the time
domain, the average power is defined by

PS =
1
TE

T

0

s2(t )dt (3.1)
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Figure 3.5 Block diagram of a time-varying frequency filtering.
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and the average noise power is defined by

PN = E
∞

−∞

(rn − mean {rn })2p (rn )drn (3.2)

where rn = {n (t )} is a random process described by an ensemble of the
random noise function, and p (rn ) is the probability density function of the
random process rn . Thus, the SNR becomes

SNRaverage =
PS
PN

(3.3)

For an additive white Gaussian noise with zero-mean and variance

s2
rn , the average noise power is PN = s2

rn , and the SNR becomes

SNRaverage =

1
TE

T

0

s2(t )dt

s2
rn

(3.4)

According to this SNR definition, an orthogonal transformation such
as the Fourier transform does not change the SNR. Thus, by taking the
Fourier transform the SNR in the frequency domain is equal to the SNR
in the time domain.

3.3.1 SNR Definition Suitable for Signal Detection and Extraction

Let us examine a sinusoidal signal buried in additive white Gaussian noise
with zero-mean and variance s2

rn as shown in Figure 3.7(a). According to
the SNR defined by (1.15), because the average signal power is very low,
the SNR is so low that it is impossible to distinguish the signal from noise
in the time domain. However, if we take the Fourier transform, a signal
peak can be seen clearly in the frequency domain as shown in Figure 3.7(b).
This suggests that the SNR definition must be modified for signal detection
and extraction. For this purpose, we are not interested in the average signal
power. Instead, we are interested in the peak power of the signal. The peak-
power SNR can be defined by modifying the instantaneous-power SNR in
(1.17) with the peak signal power:
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Figure 3.7 A sinusoidal signal in noise. (Data provided by X. G. Xia.)

SNRpeak =
Ppeak

s2
rn

(3.5)

where Ppeak = max
0 < t < T

{s2(t )}. Thus, the peak-power SNR defined here can be

used for evaluating system performance in signal detection.
Another similar SNR definition proposed in [8] can also be used for

signal detection. Assuming the peak signal power is Ppeak , we want to find
a region DT where the instantaneous signal power is above the half-power
points (i.e., the points at which the power is one-half of Ppeak , or 3 dB
below, the peak power):

DT = {t : 0 < t < T and | s2(t ) | ≥ 0.5Ppeak } (3.6)

and the SNR can be defined as

SNR DT =

1
DT E

t ∈DT

s2(t )dt

s2
rn

(3.7)

With this definition, the SNR of the noisy signal in the time domain
shown in Figure 3.7(a) is −8.4 dB. Because the SNR definition is suitable
to signals in any transform domain, we can also use the same SNR definition
to analyze the same signal but in the frequency domain. Thus, the SNR
turns out to be 16.3 dB. Therefore, the SNR improvement is about 24 dB
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in the frequency domain. This is the reason why the sinusoidal signal buried
in additive white Gaussian noise with zero-mean and variance s2

rn as shown
in Figure 3.7(a) can be easily detected in the frequency domain.

3.3.2 SNR in the Joint Time-Frequency Domain

As mentioned earlier in this chapter, by taking a time-frequency transform,
the noise tends to spread its energy over the time-frequency domain, while
the signal often concentrates its energy into regions within limited time
intervals and frequency bands. Especially for a frequency-modulated signal,
such as exp{ j2p [ f0 + (h /2)t ]t } embedded in noise, it is much easier to be
recognized in the joint time-frequency domain than in either the time or
the frequency domain alone. However, when the frequency-changing
rate h becomes very large, to keep the same signal energy the signal becomes
a short time impulse that can be easier recognized in the time domain; when
h approaches zero, the signal becomes a sinusoid exp{ j2p f0t } that can be
more easily recognized in the frequency domain. In general, there is a
question about how much the SNR can be improved with the time-frequency
transform? The answer is that it depends on the type of the time-frequency
transform and the waveform of the signal. In [8], a quantitative analysis of
SNR of a multicomponent signal with the STFT is given. The multicompo-
nent signal consists of a number of monocomponent signals

s (t ) = ∑
K

k=1
s k (t ) (3.8)

Because the time-frequency transform is especially suitable to represent
signals with time-varying spectrum, the monocomponent signal is assumed
to be a chirp-type signal

s k (t ) = ak (t ) expHj2pSf k +
h k
2

tDtJ (3.9)

where ak (t ) is the amplitude function of the k th component, f k is the starting
frequency of the k th chirp signal, and h k is the chirp rate of the k th
component.

It was proved in [8] that for the multicomponent signal in additive
Gaussian white noise with zero-mean and variance s2

rn , the SNR improve-
ment using the STFT with a rectangular window over the SNR in the time
domain is equal to or greater than the order of (N /K ):
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SNRSTFT
SNRT

≥ OSN
K D (3.10)

where N is the number of the samples within the short time window, and
K is the number of monocomponents in the multicomponent signal. In [9],
it was proved that the SNR improvement in the joint time-frequency domain
using the pseudo WVD over the SNR in the time domain is

SNRPWV
SNRT

≥ OSN

K 2D (3.11)

To improve the SNR in the time-frequency domain, higher sampling
rate and smaller number of monocomponents are desirable.

When the chirp rate in the chirp-type monocomponent signal is zero,
the chirp signal becomes a sinusoidal signal. In this case, the SNR in the
joint time-frequency domain will be equal to the SNR in the frequency
domain. If the chirp rate becomes very large, the chirp signal becomes an
impulse signal and the SNR in the time-frequency domain is equal to that
in the time domain. In order to gain a SNR improvement in the time-
frequency domain, the chirp rate must be within a certain range and must
be neither too large nor too small. The bounds have been found in [10] to
be

1/(0.8√2p )2 < max
1 ≤ k ≤ K

|h k | < 1.28p (3.12)

3.4 CFAR Detection in the Joint Time-Frequency Domain

An observed waveform in the radar receiver can be either ‘‘a signal corrupted
by noise,’’ or ‘‘noise alone.’’ The objective of signal detection is to decide
whether or not there is a signal present in the observation, subject to a certain
false-alarm rate. When a signal is detected in the observation, parameters of
the signal, such as time delay, time duration, center frequency, and frequency
change rate, can also be estimated by extracting the signal from the observed
waveform.

Classical signal detection with a fixed threshold as shown in Figure
3.8, where probability distribution functions of the signal and noise are given,
is not suitable for detecting unknown signals in a statistically nonstationary
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Figure 3.8 Classical detection of signal in noise.

environment because the false-alarm rate varies. Therefore, an adaptive CFAR
threshold is very useful under different background noise environments. The
adaptive CFAR method [1, 2] estimates the statistical characteristics of the
background noise or clutter from the neighborhoods of a test cell and, then,
sets a detection threshold based on the estimation to determine whether the
test cell belongs to the signal as illustrated in Figure 3.9.

In many practical situations, in the joint time-frequency domain the
statistical amplitude distribution p (x ) of the background noise in the time-
frequency domain can be well approximated with a Rayleigh distribution
shown in Figure 3.10, and expressed as

Figure 3.9 CFAR detection of a signal in noise.
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Figure 3.10 (a) Rayleigh distribution, and (b) distribution of an observed noise after enve-
lope detector in the joint time-frequency domain.

p (x ) =
x

m2 expH−
x2

2m2J (3.13)

where m is related to the mean value by

mean = √p
2

m (3.14)

The left-side area of the mean is equal to the right-side area, A_left =
A_right , as indicated in Figure 3.10(a).

Since the amplitude distribution of the background noise is approxi-
mately a Rayleigh distribution, the CFAR threshold can be determined with
respect to the Rayleigh amplitude distribution [11]. Thus, the background
noise in the joint time-frequency domain would be detected with the CFAR.
The number of missed points in the time-frequency domain depends on
the required false-alarm rate. For those points that are below the CFAR
threshold, they would be considered as the background noise, while all other
points above the CFAR threshold would be considered as the signal plus
the background noise.

The false-alarm rate should be chosen low enough so that not a great
number of background points are mistaken for signals. The choice of the
false-alarm rate depends on the nature of the signal expected. The lower the
false-alarm rate, the larger the number of weak signal points will be mistaken
for background noise; the higher the false-alarm rate, the larger the number
of strong noise points that will be mistaken for signals. Therefore, an
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appropriate false-alarm rate should be selected such that no significant num-
ber of noise points is mistaken for signal.

To determine the CFAR threshold, we should estimate the mean of
the Rayleigh distribution of the observed background noise. Usually, the
distribution of the background noise can be obtained by calculating the
amplitude distribution of the observed waveform over the noise-only regions
in the joint time-frequency domain. Figure 3.10(b) shows the distribution
of an observed waveform after envelope detector in the radar receiver. It
obeys the Rayleigh distribution with the mean value of 0.26 for this observed
specific waveform.

Assume the observed waveform is

x (t) = s (t) + n (t) (3.15)

then, the CFAR detection can be described as

x (t)
m

= H> Th ( for signal )
≤ Th ( for noise )

(3.16)

where Th is a threshold determined by [11]

Th = √2logeS 1
Pfa
D (3.17)

where the false-alarm rate P fa is usually set to be 10−4–10−5.
The procedure for detecting unknown signals in noise is illustrated in

Figure 3.11 and described as follows [12]:

Figure 3.11 Block diagram of the CFAR detection.
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1. Compute the time-frequency coefficients of the observed waveform
x (t ):

Cm ,n = <x (k ), gm ,n (k )>k (m = 1, 2, . . . M ; n = 1, 2, . . . N )

where k is the index of time sampling, gm ,n (k ) is a time-frequency
basis function such as a Gabor function, <x (k ), gm ,n (k )>k is the
inner product of x (k ) with gm ,n (k ) over k that gives the time-
frequency coefficient of the waveform x (k ), and Cm ,n is the
M × N time-frequency coefficient, where M is the number of time
samples and N is the number of frequency samples.

2. Determine the mean value of the Rayleigh distribution m from the
noise-only region in the joint time-frequency domain.

3. Calculate the CFAR threshold Th based on a given false-alarm rate
P fa .

4. Determine those time-frequency coefficients whose value are above
the threshold and set the rest of the time-frequency coefficients to
zero.

3.5 Signal Extraction in the Joint Time-Frequency Domain

In the joint time-frequency domain noise tends to spread its energy over
the time-frequency domain, while signals often concentrate their energy on
regions with limited time intervals and frequency bands. Thus, with CFAR
detection, signals can be detected and reconstructed by using the detected
time-frequency coefficients [12].

3.5.1 Time-Frequency Expansion and Reconstruction

The first step for reconstructing unknown signals is to eliminate the noise
in the joint time-frequency domain and obtain the noise-suppressed time-
frequency coefficients. Then, the second step is to apply the inverse time-
frequency transform to reconstruct the signal waveform.

It is known that if a linear time-frequency transform, such as the Gabor
transform, is taken for a signal, the signal can be perfectly reconstructed
from its time-frequency coefficients [13]. However, this is not always true
if the time-frequency coefficients are modified by a 2D mask function. In
general, the modified coefficients are not valid time-frequency coefficients.
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The reconstruction based on the modified coefficients may not lead to the
desired signal waveform. Therefore, some kind of criterion is needed to
estimate the anticipated signals. The most commonly used criterion is the
least squares solution method mentioned in Section 3.2, which is to find a
signal waveform whose time-frequency coefficients are close to the desired
coefficients in the least squares sense, that is:

j = min
x̂

∑
M−1

m=0
∑

N−1

n=0
| C̃m ,n − < x̂ (k ), gm ,n (k )>k |

2
(3.18)

where k is the index of time sampling, x̂ (k ) denotes the estimated waveform,
gm ,n (k ) is a time-frequency basis function, the inner product < x̂ (k ),
gm ,n (k )>k gives the time-frequency coefficient of the estimated signal, and
C̃m ,n is the desired M × N time-frequency coefficient, where M is the number
of time samples and N is the number of frequency samples.

3.5.2 Time-Frequency Masking and Signal Extraction

By applying a 2D mask function to the time-frequency coefficients Cm ,n ,
the modified time-frequency coefficients are as the follows

C̃m ,n = HCm ,n if Mm ,n = 1
0 if Mm ,n = 0

(3.19)

Figure 3.12(a) shows an example of an observed waveform that consists
of an unknown signal and noise at a SNR of 0 dB. The Gabor time-frequency
coefficients of the observed waveform in gray scales are shown in Figure
3.12(b) and the modified coefficients by applying the mask function are in
Figure 3.12(d). The mask function is obtained by applying the CFAR detec-
tion. The extracted signal waveform whose time-frequency coefficients are
close to the desired coefficients in (3.19) in the least squares sense. Compared
with the observed waveform in Figure 3.12(a), the extracted signal in Figure
3.12(c) is a noise-removed chirp waveform.
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Figure 3.12 (a) A signal in noise at an SNR of 0 dB; (b) Gabor time-frequency distribution
of the observed signal in noise; (c) the extracted signal; and (d) Gabor time-
frequency coefficients used to construct the signal.
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4
Time-Frequency Analysis of Radar
Range Profiles

Radar is an instrument traditionally used to pinpoint the position and velocity
of a target from its back-scattered microwave energy. The development of
high-resolution radar techniques in the past three decades has led to much
more advanced radar capabilities in gathering information on the fine features
of a target in addition to its position and velocity [1]. For instance, by using
sufficient frequency bandwidth, it is possible to generate a 1D down-range
map of the target called the range profile. Similarly, by observing a target
in relative motion with respect to the radar over a sufficient time interval,
it is possible to generate a 1D cross-range map of the target.

A range profile is basically a time history of the radar back-scattered
signal due to a short pulse. Since time delay t is related to the distance R
along the radar LOS via the relationship t = 2R /c , where c is the speed of
electromagnetic wave propagation, the resulting radar signal as a function
of time can be interpreted as a mapping of the reflectivity of the target along
the radar LOS, or the down-range direction. In simple targets, a range profile
typically consists of a series of distinct peaks that can be related spatially to
the isolated scattering centers on the target. These features are often utilized
for signature diagnostic and target recognition applications. In real targets,
however, the scattering physics is usually more complex. For example, the
scattering from some components on a target is not always well-localized in
time and may give rise to range-extended returns. The interpretation of these
dispersive scattering phenomena is not as easy to carry out from the time-
domain range profile.

65
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In this chapter, we examine the use of time-frequency analysis for
analyzing radar range profiles. In Section 4.1, we briefly review radar scatter-
ing phenomenology from a fundamental electromagnetics perspective (viz.,
both the theoretical foundation that leads to the well-known point-scatterer
model and higher-order scattering physics that deviates from the simple
point-scatterer model). In Section 4.2, we introduce the time-frequency
analysis of range profiles and show how complex electromagnetic scattering
mechanisms can be revealed in the joint time-frequency space. In Section
4.3, we illustrate the use of high-resolution techniques discussed in Chapter
2 for localizing and extracting the time-frequency scattering features. In
Section 4.4, we demonstrate the extension of time-frequency processing
to 2D radar imagery for extracting and interpreting complex scattering
phenomena.

4.1 Electromagnetic Phenomenology Embedded in
Back-Scattered Data

It is well known that radar targets, especially man-made targets, can often
be considered as a collection of discrete point-scatterers. This model, called
the point-scatterer model or the scattering center model, is widely used in
many radar applications. Figure 4.1 illustrates the conceptual idea of this
model, where the electromagnetic back-scattered signal from a complex target

Figure 4.1 Point-scatterer model for a complex target and the associated high-resolution
range profile.
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can be thought of as if it is emanating from a set of scattering centers on
the target. As a result, the high-resolution range profile becomes a 1D
mapping of the geometrical point features on the target.

The point-scatterer model can be rigorously related to first-principle
electromagnetic scattering theory through high-frequency ray optics, or the
so-called GTD [2, 3]. In GTD, the scattering of an electromagnetic wave
from a complex target at high frequencies is described by a set of highly
localized ray phenomena, which are each attributable to a reflection or
diffraction point on the target. As shown in Figure 4.2, these points can
include specular reflections from smooth surfaces, edge diffractions from
edges and tips, as well as multiple scattering from dihedral and trihedral
corner reflectors. These points correspond exactly to the scattering centers
in the point-scatterer model. Based on GTD, the total back-scattered field
due to a monochromatic incident wave (with angular frequency v = 2p f
and time dependence exp{ jv t }) can then be written as

E s(v ) = ∑
n

An exp{−jv (2Rn /c )} (4.1)

where Rn is the down-range location of a scattering center along the radar
LOS, and An is the scattering amplitude of the scattering center.

Figure 4.2 Ray optical descriptions of various scattering mechanisms: (a) surface reflec-
tion, (b) edge diffraction, (c) cone tip diffraction, and (d) dihedral corner
reflection.
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Several comments are in order. First, GTD is a ‘‘high-frequency’’
approximation to the rigorous Maxwell’s equations. It is an appropriate
approximation provided that the size of the target is large compared to the
radar wavelength. For example, if an X-band radar operating at 3 cm wave-
length is used to illuminate an air target of 20m size, the size of the target
is 667 wavelengths and falls well within the ray optical regime where GTD
is valid. Second, the scattering amplitudes of a number of canonical configura-
tions have been derived over the years by electromagnetics researchers. For
example, the diffraction amplitude from a conducting wedge is known in
closed form [4, 5]. However, for more general structures, the scattering
strengths are not always available analytically. Nevertheless, the basic idea
of (4.1) (i.e., the total scattering can be written as a sum of the contributions
from individual scattering centers), is well accepted even for more complex
radar targets.

Next, we consider the case when the radar data is collected over a band
of frequencies with bandwidth Dv centered about v0 = 2p f0. If we assume
the scattering amplitudes for all the scattering centers are independent of
frequency, the time-domain scattered field (or the range profile) can be
written as

E s(R ) = ∑
n

AnhSDv
c

(R − Rn )D (4.2a)

where

h (?) = exp{ j (2v0 /Dv )(?)} sinc(?) (4.2b)

is usually called the ‘‘point spread response’’ function of the scattering center.
From the argument of the sinc function, we can see that the wider the
radar bandwidth, the more focused h is in range. Therefore, given sufficient
bandwidth, the radar range profile can be used to map out the different
scattering centers on the target, as was illustrated in Figure 4.1.

We now turn our attention to discuss how real scattering phenomenol-
ogy can deviate from the idealized point-scatterer model. The first deviation
from the model in (4.1) is that the scattering amplitudes An are in general
frequency dependent. Based on GTD, the scattering amplitudes of canonical
conducting shapes have been shown to have an v g n dependence where gn
can take on half-integer values such as −1 (corner), −1/2 (edge), 0 (doubly
curved surface), +1/2 (singly curved surface) and +1 (dihedral or flat plate
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at specular) [6]. As a result of the frequency dependence, the point spread
response is in general more spread out in range than the frequency indepen-
dent case. For example, for gn = 1 the corresponding point spread response
involves the derivative of the sinc function (since multiplication by v trans-
lates into differentiation in time), which has a slightly larger width in range
than the gn = 0 response. However, this type of deviation from the idealized
point-scatterer model is quite small, especially if the bandwidth of the data
is not very large.

The second type of deviation arises if a scattering mechanism involves
ray propagation through a frequency dispersive region. In this case, the phase
of the model in (4.1) should account for not only the ray propagation path
in free space, but also that in the dispersive region. Denoting the path lengths
over each region as Rn1 and Rn2, we must modify the phase as

fn (v ) = −2Fv
c

Rn1 + b (v )Rn2G (4.3)

The behavior of b (v ) as a function of frequency is dictated by the
detailed dispersive characteristics of the propagation medium. If b (v ) is not
a linear function of frequency, the resulting range behavior of the scattering
mechanism can be more complex. In general, this means a well-localized
incident pulse will become much more spread out in range after the scattering
process.

Finally, there are situations when the scattering response completely
deviates from the point-scatterer model. Typically, this occurs when the
incident wavelength is on the order of the dimension of a scattering structure.
Under this situation, the scattering mechanisms deviate significantly from
the ray-optical description of the scattering process. In this so-called ‘‘resonant
region,’’ the response from a target feature can be very large at certain
frequencies. Physically, we can think of this phenomenon as a strong construc-
tive interference of the many multiple scattering mechanisms existing within
the structure. This type of high-Q, resonant response in frequency usually
translates into extended ringing in the range dimension. Interpretation of
these range-extended returns is difficult, as they no longer convey the geomet-
rical information that the scattering centers carry. In the next section, we
introduce joint time-frequency representations that can display the scattering
center information while simultaneously capturing the frequency dispersion
and resonance information in the back-scattered signal.
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4.2 Time-Frequency Representation of Range Profiles

The usefulness of the joint time-frequency analysis of signals has long been
recognized in the signal processing arena [7, 8]. Recently, joint time-frequency
methods have been applied to electromagnetic scattering data with good
success [9–12]. The joint time-frequency representation of a signal is a 2D
phase space that facilitates the visualization and interpretation of complex
electromagnetic wave phenomenology. In this feature space, discrete time
events such as scattering centers, discrete frequency events such as resonances,
and dispersive mechanisms due to surface waves and guided modes can be
simultaneously displayed. This can oftentimes lead to more insights into the
complex electromagnetic wave propagation and scattering mechanisms than
what is available in the traditional time or frequency domain alone.

The most common tool in generating the joint time-frequency represen-
tation of a time signal is the STFT introduced in Chapter 2. The STFT of
the range profile E s (R ) [denoted by s (t ) where t = 2R /c ] is

STFT (t , v ) = Es (t ′ )w (t ′ − t ) exp{−jv t ′ }dt ′ (4.4)

where w (?) is a short-time window function. The resulting 2D magnitude
display of |STFT (t , v ) | is called the spectrogram. The spectrogram provides
information on the frequency content of the signal at different time instances.
Shown in Figure 4.3 are the time-frequency features of some commonly
encountered scattering mechanisms discussed in the last section. A discrete
event in time is due to wave scattering from a spatially localized scattering
center on a structure. It shows up as a vertical line [Figure 4.3(a)] in the
image since it occurs at a particular time instance but over all frequencies.
A target resonance (e.g., the return from a partially open cavity), is a scattering
event that becomes prominent at a particular frequency. It shows up as a
horizontal line in the joint time-frequency plane [Figure 4.3(b)]. Dispersive
phenomena, on the other hand, are characterized by slanted curves in the
time-frequency image. For instance, surface wave mechanisms due to material
coatings are characterized by curves with a positive slope [Figure 4.3(c)].
Another type of dispersion arises from waveguide structures. These structural
dispersion mechanisms are characterized by curves with a negative slope in
the time-frequency image [Figure 4.3(d)]. The detailed behavior of the slants
is dependent on how the propagation velocity of the wave varies as a function
of frequency. All of the above mentioned phenomena have been observed
in a wide variety of structures, from simulation data on canonical structures
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Figure 4.3 Electromagnetic mechanisms are manifested in the joint time-frequency image
as distinct features: (a) scattering center; (b) resonance; (c) material dispersion;
and (d) structure dispersion. (Source: [13]  1998 SPIE.)

to measurement data on complex platforms. Below, several examples are
presented to demonstrate the unique features of electromagnetic scattering
mechanisms in the joint time-frequency plane.

In the first example, we consider a perfectly conducting strip containing
a resonant cavity near the middle of the strip shown in Figure 4.4(a). A
small fin exists at the right edge of the strip. Although this target is simple,
its scattering is representative of signatures from more realistic targets with
both exterior skinline contributions and subskinline resonances. For a radar
wave with its electric field polarized perpendicularly to the plane of the paper
and incident at 25 degrees from edge-on, three scattering centers due to the
left edge, the cavity exterior, and the fin at the right edge should arise in
the range profile. In addition, six cavity resonances are expected to be excited
in the frequency range 0.5 to 18 GHz. Figure 4.4(b) shows the frequency-
domain scattered far-field generated by a 2D moment method code based
on an electric field integral equation formulation. Although the cavity reso-
nances are expected to appear as sharp spikes in the frequency domain, they
are overshadowed by the frequency behavior of the three scattering centers
on the strip. Consequently, it is difficult to distinguish the resonances in
Figure 4.4(b). The time-domain data, shown in Figure 4.4(c), was obtained
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Figure 4.4 Back-scattered data from a conducting strip with an open cavity: (a) geometry
of the target; (b) frequency domain data; (c) time domain data; and (d) spectro-
gram obtained via the STFT. (Source: [14]  1995 IEEE.)

by inverse-Fourier transforming the 0.5 to 18 GHz data. A Kaiser window
was applied to the frequency data before the transform. The locations of
the three scattering centers (at t ∼ 0, 2, and 5 nsec) can be seen in Figure
4.4(c), but the time-behavior of the cavity resonances makes it difficult to
resolve each scattering center clearly. This is particularly true for the third
scattering center, which is excited before the resonances have significantly
decayed. Shown in Figure 4.4(d) is the spectrogram of the scattered data
obtained via the STFT. The three vertical lines correspond to the scattering
centers, and the five visible horizontal lines correspond to the cavity reso-
nances. As we can see, both scattering center phenomenon and the weaker
(although still interesting) resonances can be simultaneously displayed to
give a good picture of all the key scattering features on this target.

In the second example, the back-scattered data from a dielectric-coated
plate with a gap in the coating is considered [15]. The structure is shown
in the upper left corner of Figure 4.5. The radar signal is incident edge-on
from the left with the incident electric field polarized in the vertical direction.
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Figure 4.5 Joint time-frequency image of the back-scattering data from a coated plate
with a gap in the coating. The JTF image is generated by the STFT. Those
features which show slanting in the JTF plane are associated with the disper-
sive surface wave mechanisms in the coating. (Source: [15]  1993 IEEE.)

The radar frequency response was generated by computer simulation using the
method of moments and verified by laboratory measurement. The simulation
result is shown along the vertical frequency axis. The time-domain response,
or equivalently the range profile, was obtained by inverse-Fourier trans-
forming the 1.7-to-18-GHz data. The resulting response is shown along the
horizontal time axis. It appears that three distinct pulses are present. However,
the second and third pulses are spread out in range. In order to resolve in
finer detail the dispersive scattering mechanisms in this coated plate, the
spectrogram of the back-scattered signal is generated using the STFT. As
can be seen, the scattering mechanisms are much more apparent in the 2D
joint time-frequency plane than in either the time or the frequency domain.
In particular, it is observed that the third broad pulse in the time domain
actually consists of three separate scattering mechanisms (labeled 3a, 3b, and
3c). As the frequency approaches zero, the propagation delays of mechanisms
3a, 3b, and 3c approach the same value. As frequency increases, the pulses
have different propagation delays and become clearly separated. Slanted
curves in the time-frequency plane (like mechanisms 2, 3b, and 3c) are
characteristic of dispersive behavior. In the case of the coated plate, surface
waves excited in the coating give rise to the dispersive mechanisms. At
frequencies well above cutoff, the surface wave is tightly bound to the
dielectric and the wave velocity approaches the slower dielectric velocity.



74 Time-Frequency Transforms for Radar Imaging and Signal Analysis

Near cutoff, the surface wave velocity approaches that of free space and
exhibits a shorter propagation delay. Therefore, in the time-frequency plane,
surface wave phenomena show up as slanted curves with a positive slope.
Based on propagation delay considerations and the above observation, it is
possible to pinpoint the five dominant scattering mechanisms. They are
shown on the left in Figure 4.5, which clearly indicates that mechanisms 2,
3b, and 3c include surface wave propagation. For the polarization under
consideration and the frequency range of the data, the TM0 surface wave
mode, which has zero cutoff, is the only mode that can propagate in the
dielectric (the TM1 mode has a cutoff frequency of 23.4 GHz). Finally,
higher order scattering mechanisms can be observed during the late-time
portion of the data but are very weak.

In the third example, we consider the scattering from a conductor-
backed dielectric grating shown in Figure 4.6 [16]. The finite grating contains
twelve triangular grooves of equal width. An incident plane wave with its
magnetic field polarized perpendicularly to the plane of the paper is incident
at an angle of 30 degrees from edge-on. The back-scattered frequency data
from the grating was generated by computer simulation using a 2D method
of moments code. The frequency domain response is shown along the vertical

Figure 4.6 Joint time-frequency image of the back-scattering data from a finite, conductor-
backed periodic grating. The JTF image is generated by the STFT. The dominant
scattering mechanisms are labeled V1–V4 and H1–H4. (Source: [16]  1996
Wiley.)
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axis and the corresponding time response is shown along the horizontal
axis of Figure 4.6. Based on infinite grating theory, frequency resonances
corresponding to the retro-reflection (or back-scattering) of Floquet harmon-
ics are expected to occur at 5, 10, and 15 GHz. As can be seen from the
frequency spectrum, the two most pronounced resonances occur at 5 and
13.1 GHz. The resonances expected at 10 and 15 GHz are extremely difficult
to distinguish from the background signal. In addition, the 13.1-GHz peak
is rather surprising because it cannot be explained in terms of a Floquet
mode excited by the incident plane wave. From the time-domain perspective,
a number of distinct, yet broad, pulses are visible. The broadness of the
pulses is due to dispersive surface wave mechanisms present in the dielectric
grating and the resonant nature of the Floquet harmonics being excited. In
order to better resolve the dispersive scattering mechanisms and resonances
present in the coated strip, the STFT is used to generate the spectrogram
in Figure 4.6. Present in the spectrogram are four horizontal lines (labeled
H1–H4) and four vertically oriented lines (labeled V1–V4). These eight
features are related to the scattering mechanisms labeled in the illustrations
on the left in Figure 4.6. The fact that the spectrogram shows such distinct
features makes it easy to pinpoint the various mechanisms, including the
Floquet harmonics due to the incident wave, the Floquet harmonics due to
surface waves, and the diffraction mechanisms due to the edges of the grating.
The slanted behavior of V3 and V4 is due to the dispersive behavior of
surface waves supported by the dielectric grating and has been explained in
the last example. H2 and H3, which were barely visible as resonances in the
frequency spectrum, are easy to distinguish when viewed in the time-
frequency plane. Moreover, mechanism H4 is caused by the Floquet harmon-
ics due to the surface waves excited by the edges. It is a scattering mechanism
that is unique to finite periodic structures.

In the fourth example, the scattering from a slotted waveguide structure
is considered [17]. The geometry is shown in Figure 4.7, where a long
rectangular waveguide is flush mounted in a conducting ground plane. Two
narrow slots are opened on each end of the ground plane. The structure is
excited by a plane wave with a horizontally polarized electric field at an
angle of 30 degrees with respect to the vertical. The back-scattered data was
generated by computer simulation based on the method of moments from
0.025 to 10 GHz. The spectrogram, obtained using the STFT, is shown on
the right in Figure 4.7. The two early-time vertical lines correspond with
the exterior scattering centers from the slots. The other curves are related
to signals coupled into the waveguide. These phenomena are depicted on
the bottom left of Figure 4.7. When the wave reaches the first slot, some
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Figure 4.7 Joint time-frequency image of the back-scattering data from a slotted wave-
guide structure. The data were simulated using a method of moments solver.
The joint time-frequency image is generated by the STFT. The joint time-
frequency image shows both the early-time discrete-time returns from the slot
exterior and the late-time dispersive mechanisms due to modal propagation
inside the waveguide. (Source: [17]  1995 IEEE.)

energy is coupled into the waveguide, propagating to the other end as a sum
of waveguide modes. The energy carried by these modes begins to reradiate
through the other slot after a time given by L /c , where L is the length
between the two slots. However, this is the time delay only for frequencies
well above the modal cutoff, for which the modal group velocity approaches
c . For frequencies approaching the cutoff frequency of the respective mode,
the group velocity tends to zero and the time delay goes to infinity. Conse-
quently, each modal dispersion behavior is manifested as a time-frequency
trajectory with negative slope, as illustrated earlier in Figure 4.3(d). This
behavior can be clearly identified in the spectrogram, where the presence of
two modal dispersion curves with cutoffs at 3 GHz and at 6 GHz are
observed. They correspond to the TE10 and TE20 mode in the waveguide.
Note that the amplitude variation of the signal along these curves is governed
by the coupling mechanisms through the slot apertures and is considerably
more complex. Since multiple reflections occur, we also see other dispersion
curves with greater delays during the late-time portions of the return. The
first one corresponds with the energy that, upon reaching the other end,
reflects back and radiates through the slot on the left. The next is the three-
bounce mechanism. Note that energy is also coupled into the waveguide
through the slot on the right, and through similar mechanisms generate
dispersion curves in the time-frequency plot depending on the number of
bounces.
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From the above four examples, we can see that the joint time-frequency
representation can aid in the interpretation of complex electromagnetic scat-
tering phenomena. Furthermore, the joint time-frequency features can be well
understood in terms of the target scattering physics. For radar applications,
the time-frequency representation is particularly effective for identifying
scattering mechanisms in targets containing subskinline structures such as
inlet ducts, antenna windows, and material coatings.

4.3 Application of High-Resolution Time-Frequency
Techniques to Scattering Data

The additional insights gained in the time-frequency plane come at the price
of resolution. As discussed in Chapter 2, the spectrogram generated by the
STFT is limited in resolution by the extent of the sliding window function.
Smaller time window results in better time resolution, but leads to worse
frequency resolution, and vice versa. To overcome the resolution limit of
the STFT, a wealth of alternative time-frequency representations have been
developed by researchers in the signal processing community. Some of them
were introduced in Chapter 2. In this section, we discuss how these techniques
can be applied to analyze radar range profiles with improved feature resolution
when compared to the STFT.

4.3.1 Use of the CWT

Contrary to the fixed resolution of the STFT, the wavelet transform is a
time-frequency representation capable of achieving variable resolution in one
domain (either time or frequency) and multiresolution in the other domain.
We define here the CWT of a frequency signal S (v ) as

CWT (t , v ) =
1

2pES (v ′ )t1/2H (t (v ′ − v ))dv ′ (4.5)

where H (?) is the mother wavelet and the resulting 2D magnitude display
of (4.5) is the scalogram. The wavelet transform can also be carried out on
the inverse Fourier transform s(t) of the frequency signal S (v )

CWT (t , v ) = E s (t ′ )t −1/2h (−t ′ /t ) exp{−jv t ′ }dt ′ (4.6)
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where h (t ′ ) is the Fourier transform of H (v ′ ). Since (4.6) is essentially
the Fourier transform of s (t ′ )t −1/2h (−t ′ /t ), it is the preferred numerical
implementation of the wavelet transform through the use of the fast Fourier
transform (FFT) algorithm for each value of t . It is worthwhile to point out
here that the definition of the wavelet transform presented above in its
time and frequency forms is exactly the complement of its usual definition
introduced in Section 2.1.2. For electromagnetic scattering applications,
the property of the wavelet transform we are usually interested in is its
multiresolution capability in the frequency domain and its variable resolution
capability in the time domain. The multiresolution capability is ideally suited
for analyzing frequency-domain electromagnetic back-scattering data that
consist of both discrete time events (of large extent in frequency) and discrete
frequency events (of small extent in frequency).

As an example, the time-frequency representation of the back-scattering
data from an open-ended waveguide duct is considered [11]. The duct is an
open-ended circular waveguide with a diameter of 1.75 in. A flat conducting
termination exists 2 ft inside the waveguide [Figure 4.8(a)]. To generate the
back-scattering data, the radar cross section of this target was first simulated
in the frequency domain and the corresponding time-domain response was
then obtained by inverse-Fourier transforming the band-limited frequency
data (2–18 GHz). The polarization considered is the case where the magnetic
field is polarized horizontally. Figure 4.8(b) shows the spectrogram of the
back-scattering data at 45 degrees off-normal incidence using the STFT.
Also plotted along the two axes are the time-domain and the frequency-
domain responses. It is apparent that the scattering features are more revealing
in the time-frequency domain than in either the time or the frequency
domain alone. Both the nondispersive rim diffraction (i.e., the first vertical
line) and the mode spectra due to multiple propagating modes in the circular
waveguide can be clearly identified. However, due to the fixed resolution
of the STFT, the scattering features are smeared out in the time-frequency
plane. This problem is overcome by using the wavelet transform, as shown
by the scalogram in Figure 4.8(c). The wavelet transform is implemented
using (4.6) with the aid of the FFT. The function h (t ′ ) is chosen to be a
two-sided Kaiser-Bessel window with a Q-factor of 0.3. The t = 0 reference
of h (t ′ ) is located midway between the time events from the rim diffraction
and interior contribution (at t = 2.05 nsec). The variable time resolution of
the wavelet transform allows sharper time resolution to be achieved during
the early-time response and sharper frequency resolution (coarser time resolu-
tion) to be achieved during the late-time response. Thus, wavelet transform
provides good resolution in identifying the scattering centers and resolving the
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Figure 4.8 Joint time-frequency images of the back-scattered data from an open-ended
waveguide duct obtained via the STFT and the CWT. (Source: [11]  1993
IEEE.)

resonant phenomena of the target while adequately describing the dispersive
scattering mechanisms in the intermediate-time region.

4.3.2 Use of the TFDS

While the STFT and the wavelet transform are based on linear transforma-
tions, another class of time-frequency distributions can be obtained from
the quadratic, or power spectrum, point of view. The most basic of these
is the WVD discussed in Section 2.2.1. Although the WVD gives nearly
the best resolution among all the time-frequency techniques, its main draw-
back comes from cross-term interference problem. This drawback severely
limits the usefulness of the WVD in its original form. A number of techniques
have been proposed to alleviate this problem. Here we apply the TFDS
proposed by Qian and Chen [18] and discussed in Section 2.2.3. In this
technique, the original signal is first decomposed into its Gabor expansion.
Then, by taking the WVD of the resulting expansion and selecting only the
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low-order harmonics, it is largely possible to preserve the resolution of the
WVD while suppressing cross-term interference.

As an example, we consider the scattering from a dielectric coated wire
[19]. The coated wire is a 12-inch section of a coaxial cable (RG-41/U with
a = 0.037 in and b = 0.095 in) with its outer conductor removed. The
dielectric material is Teflon with permittivity er = 2.1. The scattering data
were collected by both numerical simulation and by chamber measurement.
The spectrograms for the case of 60-degree incidence from broadside are
shown in Figure 4.9(a). We observe a slight tilting of the vertical lines in the
spectrograms, especially in the late-time returns. This signifies the presence of
dispersive phenomena, which are due to the surface wave mechanism in the
dielectric coating known as the Goubau mode. At high frequencies, this
mode is tightly bound to the dielectric and the group velocity of the wave
approaches the slow dielectric velocity. As the frequency approaches zero,
the wave velocity approaches that of free space and exhibits a shorter propaga-
tion delay. Therefore, in the time-frequency plane, Goubau-mode phenom-
ena show up as slanted curves with a positive slope. The TFDS and the
WVD results are also given in Figure 4.9(b, c), respectively. As we can see

Figure 4.9 Joint time-frequency representations of the back-scattered data from a dielec-
tric coated wire obtained via the STFT, the TFDS with N = 2, and the WVD.
(Source: [19]  1997 IEEE.)
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from Figure 4.9(c), the WVD of the data is so contaminated by cross-term
interference it is essentially useless. The TFDS result shown in Figure 4.9(b)
is a good compromise between resolution and cross-term interference. The
returns that could not be distinguished from each other in the spectrogram
are now easily identified in the joint time-frequency plane by using the
TFDS of order 2.

4.3.3 Windowed Superresolution Algorithm

In either the STFT or the wavelet transform, the resolution in the time-
frequency plane is limited by the extent of the sliding window function. It
is possible to achieve higher resolution by replacing the Fourier transform
engine within the sliding window by a superresolution algorithm such as
MUSIC [20] or ESPRIT [21] to process the data. Super-resolved parameter-
ization retains the advantage of simultaneous time-frequency display while
overcoming the resolution issue. However, additional processing is needed
to fully parameterize the data, especially when dispersive mechanisms are
present. Furthermore, the robustness of the algorithms to noise needs to be
carefully considered. We describe here a simple windowed superresolution
procedure based on Prony’s method for achieving parameter estimation of
both scattering centers and natural resonances in the time-frequency plane
[14].

In the windowed time-frequency superresolution procedure, Prony’s
extraction is first applied in the frequency domain to locate discrete time
events. Prony’s method will fit the raw data to the following model

S (v ) = ∑
M

m=1
Am exp{−jv tm } (4.7)

where the tm ’s are the unknown locations of the discrete time events, the
Am ’s are the unknown complex strengths of these events, and M is the
number of them to be found. It is clear that applying Prony’s method to
the entire frequency data will yield a poor fit if the raw data contains
discrete frequency events such as resonances. To circumvent this problem,
we repeatedly applied Prony’s method to many small windows of the raw
data. Prony’s method will be successful for most of the window locations
and will fail only when a window coincides with a resonant peak. By repeat-
edly sliding the window along in frequency and reapplying Prony’s method
to the raw data, we can identify as true locations those values of tm that
most frequently occur. A weighted-least squares fit of the values of Am for
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each discrete time event is used to construct a smooth functional form of
Am . An important benefit of this global functional form, Am (v ), is that it
allows us to go back and interpolate Am at those frequencies where Prony’s
method originally failed.

Provided that the discrete time events have been properly located and
accounted for, the remaining data will consist solely of a series of resonant
peaks after the frequency domain extraction. To extract the natural resonance
information, this remaining data is first inverse-Fourier transformed to the
time domain. The sliding window Prony’s procedure is then applied in the
time domain to fit the complex-valued data to a model that is the dual of
(4.7)

s (t ) = ∑
N

n=1
Bn exp{ jvn t } (4.8)

in which the vn ’s are the unknown resonance frequencies, and the Bn ’s are
their corresponding strengths. By tracking the behavior of each Bn with
respect to time, other parameters associated with the resonance, such as
attenuation factor (an ) and turn-on time (tn) are extracted

s (t ) = ∑
N

n=1
bn exp{ jvn (t − tn )} exp{−an (t − tn )}u (t − tn ) (4.9)

in which the bn ’s are strengths of the resonances at turn-on and u (?) is the
unit step function [i.e., u (t ) = 1, for t ≥ 0; and u (t ) = 0, for t < 0].

As an example, let us again consider the perfectly conducting strip
containing a small open cavity, shown earlier in Figure 4.4(a). From the
spectrogram obtained via the STFT shown in Figure 4.4(d), it is possible
to extract qualitative information such as the approximate frequency behaviors
of the individual scattering centers and the resonance Q’s. However, due to
the large number of features contained in the back-scattered data, the image
is blurry, making it difficult to resolve fine details. Figure 4.10 shows the
time-frequency plot resulting from applying the windowed superresolution
procedure discussed above to the back-scattered data. Because the data is
fully parameterized via the superresolution approach, the sharpness of the
image is not constrained by the well-known Fourier limit as is the case for
the spectrogram. In the absence of noise, the image can be of nearly infinite
sharpness, and each mechanism has been chosen to appear as either a hori-
zontal or vertical line exactly one pixel in width. The intensities of the three
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Figure 4.10 Time-frequency representation of the back-scattered data from a conducting
strip with an open cavity obtained via a windowed superresolution algorithm.
(Source: [14]  1995 IEEE.)

vertical lines show that the three scattering centers are of differing strengths
and have different frequency behaviors. The high-Q resonances can be seen to
be of much longer duration than the low-Q ones. More robust superresolution
algorithm may be used in place of Prony’s method to achieve improved
performance in the presence of noise [22]. The parameterization strategy
can also be extended to deal with dispersive mechanisms [23, 24].

4.3.4 Adaptive Gaussian Representation

The wavelet transform is rather rigid in its particular form of the time-
frequency grid. It is oftentimes desirable to achieve flexible resolution in the
time-frequency plane to accommodate components of the signal with differ-
ent resolutions. Several signal-adaptive time-frequency representations have
been proposed in the literature, the best known of which are the adaptive
Gaussian representation [25] and the matching pursuit algorithm [26]. The
adaptive spectrogram, which was discussed in Section 2.1.3, uses adaptive
normalized Gaussian functions to represent the signal. In the algorithm, the
time and frequency resolution as well as the time-frequency centers are
adjusted to best match the signal. The parameterization is carried out itera-
tively by projecting the signal onto all possible bases and selecting the one
with the maximum projection value. That signal component is then sub-
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tracted from the original signal and the process is iterated until the original
signal is adequately parameterized. The result of applying the adaptive
Gaussian extraction can be effectively displayed in the time-frequency plane
using the adaptive spectrogram. It is generated by calculating the WVD of
the parameterized signal and deleting the cross terms.

To show an example of the adaptive spectrogram, we again use the
same strip-cavity structure in Figure 4.4(a). From the spectrogram shown
earlier in Figure 4.4(d), we observe that it is possible to extract qualitative
information such as the approximate frequency behaviors of the individual
scattering centers and the resonance Q’s. However, due to the large number
of features contained in the back-scattered data, the image is blurry, making it
difficult to resolve fine details. We apply the adaptive Gaussian representation
described in Section 2.1.3 and obtain an approximation of the signal using
50 terms with a residual energy of 0.1%. The resulting adaptive spectrogram
is shown in Figure 4.11. We can clearly see and locate with high resolution
the three scattering centers and the resonances. As expected, the high-Q
resonances appear as very thin horizontal lines, while the low-Q resonances
appear as thicker lines. We can even observe that the second and third
scattering centers, which correspond respectively to the cavity exterior and
the right fin, each contain multiple scattering events in time due to their
more complicated shapes.

Figure 4.11 Adaptive spectrogram of the back-scattered data from the conducting strip
with an open cavity shown in Figure 4.4(a).
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4.4 Extraction of Dispersive Scattering Features from
Radar Imagery Using Time-Frequency Processing

The joint time-frequency processing of 1D range profiles described in Sec-
tions 4.2 and 4.3 can be extended to deal with 2D radar imagery. ISAR
imaging has long been used by the microwave radar community for object-
diagnostic and target-identification applications. ISAR is a simple and very
robust process for mapping the position and magnitude of the point-scatterers
on a target from multifrequency, multiaspect back-scattered data. However,
for complex targets containing other scattering phenomena such as resonances
and dispersive mechanisms, image artifacts are often encountered in the
resulting ISAR image [27]. One important example is the scattering from
the engine inlet/exhaust duct on aircraft. It is a dominant contributor to
the overall scattering from the target, yet its waveguide-like structure and
the associated frequency-dependent scattering mechanisms make it a non-
point-scattering feature. When processed and displayed by the conventional
ISAR algorithm, the inlet return results in an image feature which is not
well-focused, is not related to the spatial location of the scatterer, and can
often obscure other important point features on the target. Therefore, it
would be useful to automatically remove these artifacts from the ISAR image,
leading to a cleaned ISAR image containing only physically meaningful point-
scatterers. Furthermore, the extracted inlet features can be better displayed in
a more meaningful feature space to identify target resonances and cutoff
phenomena.

Joint time-frequency processing can be applied to ISAR image pro-
cessing to accomplish the above objective [28]. The conceptual idea behind
the joint time-frequency ISAR algorithm is to apply joint time-frequency
transform to the range (or time) axis of the conventional range and cross-
range ISAR image to gain an additional frequency dimension. The result is
a three-dimensional (3D) range, cross-range, and frequency matrix, with
each range and cross-range slice of this matrix representing an ISAR image
at a particular frequency. This concept is illustrated in Figure 4.12. Conse-
quently, by examining how the ISAR image varies with frequency, we can
distinguish the frequency-independent scattering mechanisms from the fre-
quency-dependent ones. In the actual implementation of the joint time-
frequency ISAR, the choice of the joint time-frequency processing engine
is critical to preserve range resolution. This is demonstrated below using the
adaptive Gaussian representation discussed earlier in Sections 2.1.3 and 4.3.4.

The adaptive Gaussian representation has two distinct advantages over
the STFT. First, it is a parametric procedure that results in very high time-
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Figure 4.12 Joint time-frequency processing is applied to the range dimension of the
conventional range and cross-range ISAR image to gain an additional fre-
quency dimension. By examining how the resulting images vary as a function
of frequency, the frequency-independent features can be separated from the
frequency-dependent ones and displayed in an appropriate feature space.
(Source: [29]  1999 IEEE.)

frequency resolution. More importantly for the application under consider-
ation, the adaptive representation allows us to automatically distinguish the
frequency-dependent events from the frequency-independent ones through
the extent of the basis functions. Equation (2.11) shows that scattering
centers (i.e., signals with very narrow length in time) will be well represented
by basis functions with very small s p . Frequency resonances, on the other
hand, will be better depicted by large s p . Therefore, if we reconstruct the
ISAR image using only those Gaussian bases with small variances, a much
cleaner image can be obtained showing only the scattering centers. The
remaining mechanisms (i.e., those related to the large-variance Gaussians)
are more meaningful to view in a dual frequency-aspect display, where
resonances and other frequency-dependent mechanisms can be better
identified.

Two examples of joint time-frequency ISAR processing are presented.
The first example is based on numerically simulated data for the perfectly
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conducting strip containing a small open cavity discussed earlier in Figure
4.4(a). Figure 4.13(a) shows its ISAR image at 30 degrees from edge on.
The target outline is overlaid over the image for reference. The data used
to form the image was collected from 5 to 15 GHz and over angular window
of 0 to 60 degrees. We notice in the image that in addition to the three
scattering centers corresponding to the left and right edge of the strip and
the cavity exterior, there is a large cloud near the cavity spreading through
the down range. This return corresponds to the energy coupled into the
cavity and reradiated through the resonant mechanism. Figure 4.13(b) shows
the enhanced ISAR image of Figure 4.13(a), obtained by applying the
adaptive algorithm and keeping only the small-variance Gaussians. We see
that the large cloud corresponding to the cavity resonance has been removed

Figure 4.13 (a) The standard ISAR image of the conducting strip with a small cavity,
obtained using frequency data from 5 to 15 GHz and angular data from 0 to
60 degrees; (b) enhanced ISAR image obtained by applying the adaptive
Gaussian representation to the ISAR image in (a); and (c) the extracted
resonant features of the inlet shown in the frequency-aspect plane. (Source:
[28]  1997 IEEE.)
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and only the scattering center part of the original signal remains in the
image, as expected. Figure 4.13(c) shows the frequency-aspect display of the
high-variance Gaussians. Several very distinct equispaced vertical lines are
observed. They correspond to the resonant frequencies of the cavity, which
should occur at 5.30, 8.39, 11.86, and 13.52 GHz based on the dimensions
of the cavity. Indeed, we see that they occur close to these frequencies and
are almost aspect independent.

The algorithm is next demonstrated using the chamber measurement
data of a 1:30 scale model Lockheed VFY-218 airplane provided by the
Electromagnetic Code Consortium [30]. The airplane, shown in Figure
4.14(a), has two long engine inlet ducts that are rectangular at the open

Figure 4.14 (a) The VFY-218 model; (b) its standard ISAR image obtained for f = 8 to 16
GHz and a 40-degree angular window centered at 30 degrees from nose-
on; (c) enhanced ISAR image obtained by applying the adaptive Gaussian
representation to the ISAR image (the inlet cloud has been removed from
the original ISAR image); and (d) the extracted resonant features of the inlet
are shown in the frequency-aspect plane. (Source: [31]  1997 IEEE.)
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ends but merge together into one circular section before reaching a single-
compressor face. As we can clearly see in the conventional ISAR image of
Figure 4.14(b) for the horizontal polarization at 20 degrees near nose-on,
the large cloud outside of the airframe structure is the inlet return. Figure
4.14(c) shows the enhanced ISAR image of Figure 4.14(b), obtained by
applying the joint time-frequency ISAR algorithm and keeping only the
small-variance Gaussians. We see that only the scattering center part of the
original signal remains in the image, as expected. Notice that the strong
return due to engine inlet has been removed, but the scattering from the
right wing tip remains. Figure 4.14(d) shows the frequency-aspect display
of the high-variance Gaussians. A number of equispaced vertical lines can
be seen between 10.5 and 13.5 GHz. Given the dimension of the rectangular
inlet opening, we estimate that these frequencies correspond approximately
to the second cutoff frequency of the waveguide-like inlet. This information
is unique to the particular inlet structure under consideration and may be
useful as an additional feature vector in target classification [32].

In summary, we have discussed a joint time-frequency ISAR algorithm
to process data from complex targets containing not only scattering centers
but also other frequency-dependent scattering mechanisms. The adaptive
joint time-frequency ISAR algorithm allows the enhancement of the ISAR
image by eliminating non-point-scatterer signals, thus leading to a much
cleaner ISAR image. It also provides information on the extracted frequency-
dependent mechanisms such as resonances and frequency dispersions. This
is accomplished without any loss in resolution.
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5
Time-Frequency-Based Radar Image
Formation

Radar image formation is a process of reconstructing images of radar targets
from recorded complex data. All imaging techniques, essentially, project a
3D object space onto a 2D image plane. Radar image, specifically, is a
mapping of a 3D target onto a 2D range and cross-range plane. To generate
an image with radar systems, three major components (transmitter, target,
and receiver) are required. The transmitter emits a sequence of pulses to the
target to be imaged; the receiver then records the reflected pulses from the
target and processes the recorded data to reconstruct an image of the target.
To generate a 2D radar range and cross-range image, the recorded raw data
need to be rearranged into a 2D format. The range resolution of a radar
image is directly related to the bandwidth of the transmitted radar signal, and
the cross-range resolution is determined by the effective antenna beamwidth,
which is inversely proportional to the effective length of the antenna aperture.
As we introduced in Chapter 1, to achieve a high cross-range resolution
without using a large physical antenna aperture, synthetic array processing
is widely used which coherently combines signals obtained from sequences
of small apertures at different angle aspects to a target to emulate the result
from a large aperture.

As we mentioned in Chapter 1, SAR generates a high-resolution map
of stationary surface targets and terrain; ISAR uses a geometrically inverse
way where the radar is stationary and targets are moving to generate image
of targets [1–3]. With a sufficient high-Doppler resolution, differential
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Doppler shifts of adjacent scatterers on a target can be observed, and the
distribution of the target’s reflectivity can be obtained through the Doppler
frequency spectrum. Conventional methods to retrieve Doppler information
are based on the Fourier transform. By taking the Fourier transform of a
sequence of time history series, an ISAR image can be formed. Therefore,
the conventional radar image formation is a Fourier-based image formation
[4].

In this chapter, we discuss the Fourier-based image formation and
introduce a new time-frequency-based image formation. We will briefly
describe the background of radar imaging of moving targets and the time-
varying behavior of Doppler frequency shifts in Section 5.1. We will discuss
the standard motion compensation and image formation in Section 5.2 and
introduce the time-frequency-based image formation in Section 5.3. Some
issues on radar imaging of maneuvering targets and multiple targets will be
discussed in Sections 5.4 and 5.5.

5.1 Radar Imaging of Moving Targets

The geometry of the radar imaging of a target is shown in Figure 5.1. The
radar is located at the origin of the Cartesian coordinates (U , V, W ), called
the radar coordinates. The target is described in Cartesian coordinates
(x , y , z ) with its origin located at the geometric center of the target, called
target coordinates. To describe rotations of the target, new reference coordi-
nates (X , Y , Z ), translated from the radar coordinates (U , V, W ) and with
origin at the geometric center of the target, are introduced. For simplicity,
we show only a planar target in 2D coordinates. The third dimension can
be easily added with the necessary equations modified by an elevation angle.

Assume that the radar transmits a sinusoidal waveform with a carrier
frequency f0. At time t = 0, the target range (i.e., the distance from the
radar antenna to the geometric center of the target) is R , and the distance
from the radar to a point-scatterer P on the target, located at (x , y , z = 0),
is

RP = [(TX + x cosu0 − y sinu0)2 + (TY + y cosu0 + x sinu0)2]1/2

= {R 2 + (x2 + y2) + 2R [x cos(u0 − a ) − y sin(u0 − a )]}1/2 (5.1)

≅ R + x cos(u0 − a ) − y sin(u0 − a )

where (TX , TY, TZ = 0) is the translation of the origin of the (x , y , z )
coordinates with respect to the radar (U , V, W ) coordinates, a is the azimuth
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Figure 5.1 Geometry of the radar imaging of a target.

angle of the target with respect to the (U , V, W ) coordinates, and u0 is the
initial rotation angle of the (x , y , z ) coordinates about the Z -axis in the
(X , Y, Z ) coordinates as illustrated in Figure 5.1.

If the target has a rotational motion with an initial angular rotation
rate V about the Z -axis and a translational motion with a radial velocity
VR , then the range and the rotation angle of the target is a function of time.
The range can be expressed by the target’s initial range R0, the initial velocity
VR , the initial radial acceleration aR (= dVR /dt ), and other higher order
terms; and the rotation angle can be expressed by the initial orientation
angle u0 with respect to the (X , Y, Z ) coordinates, the initial angular rotation
rate V, the initial angular acceleration g (= dV /dt ), and other higher order
terms:

R (t ) = R0 + VR t +
1
2

aR t2 + . . . (5.2)

and

u (t ) = u0 + Vt +
1
2

g t2 + . . . (5.3)
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Thus, the range from the radar to the point-scatterer P becomes

RP (t ) = R (t ) + x cos[u (t ) − a ] − y sin[u (t ) − a ] (5.4)

and the baseband of the returned signal from the point-scatterer P is a
function of Rt = R (t ) and u t = u (t ):

s P (t ) = r (x , y , z ) expH j2p f0
2RP (t )

c J = r (x , y , z ) exp{ jF(RPt )}

(5.5)

where RPt is an abbreviation of RP (t ), r (x , y , z ) is the reflectivity function
of the point-scatterer P at (x , y , z ), and c is the speed of electromagnetic
wave propagation.

The phase of the baseband signal is

F(RPt ) = 2p f0
2RP (t )

c
(5.6)

By taking the time-derivative of the phase, the Doppler frequency shift
induced by the target’s motion is approximately

fD =
2f0
c

d
dt

RP (t )

=
2f0
c

VR +
2f0
c

[−xV sin(u0 + Vt − a ) − yV cos(u0 + Vt − a )]

=
2f0
c

VR +
2f0
c

{−xV[sin(u0 − a ) cosVt + cos(u0 − a ) sinVt ]

−yV[cos(u0 − a ) cosVt − sin(u0 − a ) sinVt ]} (5.7)

where we only use the zero and first-order terms in (5.2) and (5.3). For
a given rotation rate and coherent processing time t , if V2t2 << 1 and
V3t3 << Vt , hence cosVt = 1 − V2t2 /2 + . . . ≅ 1 and sinVt ≅ Vt −
V3t3 /6 + . . . ≅ Vt , we have
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fD ≅
2f0
c

VR +
2f0
c

{−xV[sin(u0 − a ) + cos(u0 − a )Vt ]

−yV[cos(u0 − a ) − sin(u0 − a )Vt ]}

=
2f0
c

VR +
2f0
c

{−[x sin(u0 − a ) + y cos(u0 − a )]V

− [x cos(u0 − a ) − y sin(u0 − a )]V2t } = fDTrans + fDRot (5.8)

where the Doppler frequency shift induced by the translational motion is

fDTrans =
2f0
c

VR (5.9)

and that induced by the rotational motion is

fDRot =
2f0
c

{−[x sin(u0 − a ) + y cos(u0 − a )]V (5.10)

− [x cos(u0 − a ) − y sin(u0 − a )]V2t }

The first and the second terms of (5.10) come from the linear and
quadratic parts of the phase function, respectively. The quadratic part of
the rotational Doppler frequency shift is a function of time. Therefore,
given angular rotation rate, carrier frequency, and the scatterer’s location

(x , y , z ), if
2f0
c

[x cos(u0 − a ) − y sin(u0 − a )]V2 cannot be neglected, the

rotational Doppler frequency shift is time-varying, even if the angular rotation
rate V is a constant.

Based on the returned signal from a single point-scatterer, the returned
signal from the target can be represented as the integration of the returned
signals from all scatterers in the target:

s R (t ) = E
∞

−∞

E
∞

−∞

E
∞

−∞

r (x , y , z ) expH−j2p f0
2RP (t )

c Jdxdydz (5.11)

for 2RP (t )/c ≤ t ≤ TPRI + 2RP (t )/c

where TPRI is the PRI of the transmitted signal.
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For a target that has translational and rotational motion and, for
simplicity, assuming the target’s azimuth angle a is zero, then the range of
a point-scatterer at (x , y , z = 0) in the target coordinate system can be
rewritten as RP (t ) = R (t ) + x cosu (t ) − y sinu (t ) and the returned signal
in (5.11) can be rewritten as

s R (t ) = exp{−j4p f0R (t )/c }E
∞

−∞

E
∞

−∞

E
∞

−∞

r (x , y , z ) (5.12)

expH−j2p [xf x (t ) − yf y (t )]Jdxdydz

for 2RP (t )/c ≤ t ≤ TPRI + 2RP (t )/c

where the components of the spatial frequency are determined by

f x (t ) =
2f0
c

cosu (t ) (5.13)

and

f y (t ) =
2f0
c

sinu (t ) (5.14)

From (5.12) we know that if the target’s initial range R0 is known
exactly and the velocity VR and acceleration aR of the target’s motion are
known exactly over the entire coherent processing interval, then the extrane-
ous phase term of the motion exp{−j4p f0R (t )/c } can be exactly removed
by multiplying exp{ j4p f0R (t )/c } on both sides of (5.12). Therefore, the
reflectivity density function r (x , y , z ) of the target can be obtained simply
by taking the inverse Fourier transform of the phase-compensated baseband
signal sR (t ) exp{ j4p f0R (t )/c }.

The process of estimating the target’s motion and removing the extrane-
ous phase term is called range tracking. This is a fundamental step in
the standard motion compensation procedure, also called coarse motion
compensation. Then, the inverse Fourier transform may be used to recon-
struct the reflective density function of the target.

In order to use the Fourier transform properly, certain conditions must
be satisfied. During the entire coherent imaging processing time, the scatterers
must remain in their range cells, and their Doppler frequency shifts must
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be constant. If the scatterers drift out their range cells or their Doppler
frequency shifts are time-varying, the image reconstructed by using the
Fourier transform becomes blurred. Only with the range tracking processing
and without applying any phase compensation, can Doppler frequency shifts
still be time-varying. Thus, a fine motion compensation, called Doppler
tracking, should be applied to make phase compensation and, hence, Doppler
frequency shifts, constant. The range tracking and Doppler tracking are the
bases of the standard motion compensation.

Figure 5.2 illustrates the process of the ISAR imaging system using a
wide-band waveform. The radar transmits a sequence of N pulses. The range
resolution is determined by the bandwidth of the pulse. For each transmitted
pulse, the total number of range cells, M , is determined by the maximum
range covered and the range resolution. The total number of pulses, N , for
a given imaging integration time determines the Doppler or cross-range
resolution.

After being pulse-compressed, heterodyned, and quadraturely detected
in the radar receiver, the base-band I and Q signals as defined in Chapter
1 are organized into an M × N 2D complex array sR (rm,n ) where m = 0,
1, . . . , M − 1; n = 0, 1, . . . , N − 1. Therefore N range profiles, each
containing M range cells, can be obtained. At each range cell, the data across
the N range profiles constitutes a new time history series. After applying
range tracking and Doppler tracking, the aligned-range profiles become
G (rm,n ), (m = 0, 1, . . . , M − 1; n = 0, 1, . . . , N − 1).

The Fourier-based image formation takes the Fourier transform or FFT
for the new time history series and generates an N -point Doppler spectrum
called the Doppler profile. By combining the M Doppler spectra at M range
cells, finally, the M × N image is formed

I (rm , f n ) = FFTn {G (rm ,n )} (5.15)

where FFTn denotes the FFT operation with respect to the variable n .
Therefore the radar image I (rm , f n ) is the target’s reflectivities mapped onto
the range-Doppler plane.

As we described earlier in (5.10), when the target’s angular rotation
rate is high or the image coherent processing interval is long, the rotational
Doppler frequency shift can be time varying.

Other sources of time-variation in the Doppler frequency shift may
result from uncompensated phase errors due to irregularities in the motion
of the target, the fluctuation of the rotation rate of the target, fluctuation
in localizing the rotation center, inaccuracy in tracking the phase history,
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Figure 5.2 Illustration of the process of the SAR imaging system.
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and other variations of the system and the environment. From the relationship
between the range and the phase given in (5.6), the phase is very sensitive
to the range variation. For example, for an X-band radar at 10 GHz,
Dr = 1.5 cm (i.e., half-wavelength) range drift can cause DF = 4p f0Dr /c =
360-degree phase deviation. Since the residual phase errors may vary with
time, the Doppler frequency also varies with time.

As is known [5, 6], the Fourier transform only indicates what frequency
components are contained in the signal; it does not tell how frequencies
change with time. By representing the time-varying Doppler frequency spec-
trum with the Fourier transform, the Doppler spectrum becomes smeared.
For showing this, we apply the Fourier transform and the STFT [7, 8] to
a time history series of a measured radar data as shown in Figure 5.3. We
can see that the Fourier transform of the time history series is actually the
integral of the time-frequency transform of the same series over its time

Figure 5.3 (a) Time history series of real radar data; (b) Fourier transform of the time
history series; and (c) time-frequency transform of the same time history series.
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duration. This is because of the frequency marginal condition. For a signal
s (t ), if its joint time-frequency energy distribution P (t , f ) satisfies the
following condition:

EP (t , f )dt = |S ( f ) |
2

(5.16)

and

EP (t , f )df = | s (t ) |
2

(5.17)

where S ( f ) is the Fourier transform of the signal, the time-frequency trans-
form satisfies the frequency and the time marginal conditions.

Because the cause of image smearing is the use of the Fourier transform
for such data that has time-varying Doppler frequency spectrum, to better
deal with such data and generate a clear image, a time-frequency transform
can be used to replace the Fourier transform. The time-frequency transform
introduced in Chapter 2 is an efficient way to resolve the image smearing
caused by the time-varying Doppler’s behavior without applying sophisticated
algorithms of motion compensation.

5.2 Standard Motion Compensation and Fourier-Based
Image Formation

To generate a clear radar image, motion compensation algorithms must be
applied. The purpose of the motion compensation is to preprocess the data
such that conventional Fourier image formation can be applied to obtain a
well-focused radar image.

As is described in Section 5.1, to use the Fourier-based image formation
properly, the following conditions must be satisfied during the coherent
image processing time: (1) the scatterers on the target must remain in their
range cells, and (2) their Doppler frequency shifts must be constant. If the
scatterers drift out their range cells or their Doppler frequency shifts are
time varying, the Doppler spectrum obtained from the Fourier transform
becomes smeared, and the radar image becomes blurred.

Standard motion compensation includes range tracking (by applying
range-bin alignment) and Doppler tracking (by applying phase correction
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or compensation) [9–15]. Range tracking can keep scatterers in their range
cells; Doppler tracking makes Doppler frequency shifts to be constant as
illustrated in Figure 5.4. Therefore, after motion compensation, all scatterers
on the target appear to be moving with a constant speed (due to its constant
Doppler frequency shift) and along a perfect circle (due to its constant range).
The range tracking or alignment process can be performed by a cross-
correlation method that finds misaligned range cells with respect to a reference
range profile and, then, performs range alignment for all range profiles. The
Doppler tracking is performed using a phase compensation method. The
phase compensation procedure usually includes three steps: (1) searching for
one or several reference range cells by using a criteria such as minimum
variance; (2) taking conjugate phase at the reference range cells; and (3)
making phase correction for all range cells using the conjugate phase. Figure
5.4 illustrates the standard motion compensation diagram and shows results
of the range tracking and Doppler tracking.

If a target is moving smoothly, standard motion compensation is good
enough to generate a clear image of the target by using the Fourier transform.
However, when a target exhibits complex motion such as rotation, accelera-
tion or maneuvering, the standard motion compensation is not sufficient
to generate an acceptable image for viewing and analysis. In that case,
more sophisticated algorithms for compensating motions of individual scat-
terers, such as polar reformatting and other more complicated algorithms,
are needed. Thus, each scatterer can remain in its range cell and its Doppler

Figure 5.4 Standard motion compensation diagram.
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frequency shift becomes a constant. Then the Fourier transform can be
applied properly to reconstruct a clear image of the target [16].

Polar reformatting, which can correct rotational motion for individual
scatterers, requires one to resample the data so that the sample points on
the polar sampling grid are conformed to the desired sample points on a
rectangular sampling grid [1, 2]. Besides, to perform the polar reformatting
some initial kinematic parameters of the target are required.

If the sophisticated motion compensation is still not sufficient, these
individual scatterers may still drift through their range cells, and their Doppler
frequency shifts may still be time-varying. Thus, the resulting image can still
be blurred if the conventional Fourier transform is applied.

However, the restriction of the Fourier transform can be circumvented
if it is replaced with a time-frequency transform. Because of the time-varying
behavior of the Doppler frequency shift, an efficient method to solve the
problem of the smeared Fourier frequency spectrum and, hence, the blurred
image is to apply a high-resolution time-frequency transform to the Doppler
processing. In that way, the image blurring caused by time-varying Doppler
frequency shifts can be mitigated without applying sophisticated motion
compensation algorithms [17].

5.3 Time-Frequency-Based Image Formation

We described the basic concept of ISAR imaging in Chapter 1 and at the
beginning of this chapter, and also described the conventional Fourier-
based imaging system in Section 5.1. To generate a clear ISAR image of
maneuvering targets, a time-frequency transform with superior resolution,
low cross-term interference, and unbiased estimation of the instantaneous
frequency spectrum is always desirable.

To apply the time-frequency-based image formation, we need a time-
frequency transform that is specially designed for computing time-varying
spectra and retrieving instantaneous Doppler frequency information. Having
a high-resolution time-varying Doppler spectrum, it is no longer necessary
to flatten out the distribution of the Doppler frequency spectrum and to
compensate motions of individual scatterers for obtaining a clear image of
moving targets. Instead of generating a range and Doppler (or cross-range
with a known scaling factor) image, the time-varying Doppler spectrum can
be used to generate a number of range and instantaneous Doppler images.

Figure 5.5 illustrates the radar imaging system based on the time-
frequency transform [17–21]. The only difference between the time-
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Figure 5.5 Illustration of a radar imaging system based on the time-frequency image formation.
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frequency-based imaging system and the conventional Fourier-based imaging
system is that the Fourier transform is replaced by a time-frequency transform,
followed by time sampling. Assuming the data is formed as a complex 2D
array G (rm ,n ) with M time history series, each having the length of N (or
N pulses), the Fourier-based imaging formation generates only one image
frame from the M × N I and Q data array. However, the time-frequency-
based imaging formation takes a time-frequency transform for each time
history series and generates an N × N time-Doppler distribution. By combin-
ing the M time-Doppler distributions at M range cells, the N × M × N
time-range-Doppler cube Q (rm , f n , t n ) can be formed:

Q (rm , f n , t n ) = TFTn {G (rm ,n )}

where TFTn denotes the time-frequency transform with respect to the
variable n .

Because the time-frequency transform can calculate the instantaneous
Doppler frequency shift, at any instant the Doppler frequency shift of each
scatterer on a target becomes a fixed value with its Doppler resolution
determined by the selected time-frequency transform. At a sampling time
t i , only one range and instantaneous Doppler image frame Q (rm , f n , t n =
t i ) can be extracted from the N × M × N time-range-Doppler cube. There
are a total of N image frames available, and each frame represents a full
range-Doppler image at a particular time. Therefore, by replacing the Fourier
transform with the time-frequency transform, a 2D range-Doppler image
becomes a 3D time-range-Doppler image cube. By taking time sampling, a
temporal sequence of 2D range-Doppler images can be viewed [17]. Each
individual time-sampled frame in the cube provides a clear image with a
superior resolution provided by the time-frequency transform. According to
the frequency marginal condition in (5.16), integration of the N frames
turns out to be a Fourier image:

I (rm , f n ) = ∑
tN−1

t n =t 0

Q (rm , f n , t n ) (5.18)

It is not usually necessary to take the maximal N time-samples because
the Doppler variation from one sample to the next is not significant. In
many cases, 16 or 32 equally spaced time-samples may be good enough to
show the detailed Doppler variations.

In the following sections, we will give examples of the time-frequency
transform for radar imaging of maneuvering targets and multiple targets.
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5.4 Radar Imaging of Maneuvering Targets

A maneuvering target is defined as one that has translational and rotational,
possibly nonuniform motions during the coherent processing interval. A
challenge in radar imaging is how to form a clear image of maneuvering
targets. In this section, we will describe dynamics of maneuvering targets
and apply time-frequency-based image formation to radar imaging of maneu-
vering targets. We will use both the simulated and the measured radar data
to demonstrate the time-frequency-based image formation. We also compare
different time-frequency transforms used in the time-frequency-based image
formation.

5.4.1 Dynamics of Maneuvering Targets

For a coordinate system as that shown earlier in Figure 5.1, where the
target coordinates (x , y , z ) have a translation (TX , TY , TZ ) from the radar
coordinates (U , V, W ) and has a rotation angle u (t ) at time t about the
reference coordinates (X , Y , Z ), which have translation only from the
(U , V, W ) coordinates but no translation from the (x , y , z ) coordinates.
Thus, the translation matrix is defined as

Trans (TX , TY , TZ ) = 3
1 0 0 TX

0 1 0 TY

0 0 1 TZ

0 0 0 1
4 (5.19)

where TX = R cosa , TY = R sina , and TZ = 0 as shown in Figure 5.1.
A frequently used set of rotational motions is roll, pitch, and yaw. For

an aircraft heading along the x -axis, roll corresponds to a rotation about the
x -axis, pitch corresponds to a rotation about the y -axis, and yaw corresponds
to a rotation about the z -axis. If the order of rotations is a roll with an angle
ur , followed by a pitch with an angle up , and finally, a yaw with an angle
uy , then the composite roll, pitch, and yaw motion in the target’s coordinates
can be represented by a rotation matrix [21].

Rot (ur , up , uy ) = 3
a11 a12 a13

a21 a22 a23

a31 a32 a33
4 (5.20)
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where

a11 = cosup cosuy

a12 = −cosup sinuy

a13 = sinup

a21 = sinur sinup cosuy + cosur sinuy

a22 = −sinur sinup sinuy + cosur cosuy

a23 = −sinur cosup

a31 = −cosur sinup cosuy + sinur sinuy

a32 = cosur sinup sinuy + sinur cosuy

a33 = cosur cosup

Due to the composite rotation, a scatterer at
›

S 1 = [X1, Y1, Z1]
observed in the (X , Y, Z ) coordinate system will rotate to

›
S 2 =

[X2, Y2, Z2] in the same coordinates.
›

S 1 and
›

S 2 is related by the rotation
matrix:

›
S 2 = {Rot (ur , up , uy )

›
S T

1 }T (5.21)

where T denotes the transpose of the vector. In general, the composite
translation and rotation matrix is [21]

Trans (TX , TY , TZ )Rot (ur , up , uy ) = 3
a11 a12 a13 TX

a21 a22 a23 TY

a31 a32 a33 TZ

0 0 0 1
4

(5.22)

With the composite translation and rotation matrix, the coordinates
of any maneuvering target can be calculated by given rotation angles
(ur , up , uy ) and translations (TX , TY , TZ ).

5.4.2 Radar Imaging of Maneuvering Target Using Time-Frequency-
Based Image Formation

To demonstrate radar imaging of maneuvering targets, we first use simulated
radar data, and then apply the time-frequency-based image formation to
measured radar data.
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In the simulation, the radar is assumed to be operating in X-band at
a center frequency of f0 = 9,000 MHz and transmits a stepped-frequency
waveform. Any other waveform, such as linear frequency-modulated and
chirp-pulse waveforms, can also be used for the time-frequency-based image
formation. A total of M = 64 stepped frequencies are used with a frequency
step of 8 MHz to cover a 500 MHz bandwidth or achieve 0.29m range
resolution. Each pulse only transmits one carrier frequency wave. After
transmitting a group of 64 pulses at 64 stepped frequencies called a burst,
the radar transmits another burst. In our simulation, the PRF is 20,000
pulses/sec, which is at least 64 times higher than the burst repetition frequency
to generate an image covering the entire target. The image observation time
should be long enough to achieve the desired cross-range resolution. In the
simulation, coherent image processing time T = MN /PRF = 1.64 sec with
N = 512 samples of the time history series is used. Thus, the radar image
consists of 64 range-cells and 512 Doppler frequencies or cross-range cells.

An aircraft (MIG-25) is simulated in terms of 2D reflectivity density
function r (x , y ) characterized by 120 point-scatterers having equal reflectiv-
ity. These 120 point-scatterers are distributed along the edge of the 2D
shape of the aircraft. The simplified point-scatterer model is very simple
compared to the electromagnetic prediction code simulation such as the
X-patch. Although the point-scatterers do not represent the actual distribu-
tion of the reflectivity, it is convenient for displaying the shape of the
formatted image of the target. It is good enough for testing and comparing
different motion compensation and image formation algorithms.

The aircraft is initially located at a range of 3,500m and has a fast
rotation rate of 10 degrees/sec, which is much higher than the normal
rotation rate of producing a clear image of a target. We assume that target’s
translation motion can be perfectly compensated. However, due to the fast
rotation and relatively longer image observation time, even after standard
motion compensation, the uncompensated phase error is still large. Thus,
the formed image by using the Fourier transform is still blurred as shown
in Figure 5.6(a).

When a target has a fast rotational motion, polar reformatting is usually
desired [1, 2]. This can eliminate individual scatterers from drifting through
their range cells, and allow the Fourier transform to be used properly.
However, to perform polar reformatting, the knowledge of initial kinematic
parameters of the target is required. In addition, resampling and polar-to-
rectangular reformation increases the computational complexity of the image
formation process.

With the time-frequency-based image formation, at each time the range
and the Doppler frequency shift of each scatterer can be determined. Thus,
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Figure 5.6 (a) Image of a simulated MIG-25 reconstructed with the Fourier-based image
formation, and (b) image frame 7 reconstructed with the time-frequency-based
image formation.

without knowing the initial kinematic parameters and resampling the data,
a blurred Fourier image due to smeared Fourier spectrum will become a
sequence of clear range and instantaneous Doppler images.

In principle, any time-frequency transform can be used to replace the
Fourier transform for radar image formation. However, a desired time-
frequency transform should satisfy the following requirements: (1) it should
have high resolution in both the time and frequency domains, and (2) it
should accurately reflect the instantaneous frequencies of the analyzed signal.

As discussed in Chapter 2, time-frequency transforms include linear
transforms such as the STFT, and bilinear transforms such as the WVD.
The joint time-frequency resolution of the STFT is limited by the uncertainty
principle. With a time-limited window function, the resolution of the STFT
is determined by the window size. There is a trade-off between the time-
resolution and the frequency resolution. A larger window has higher fre-
quency resolution but lower time resolution; a smaller window has lower
frequency resolution but higher time resolution.

Unlike the STFT, in which the time and frequency resolution is deter-
mined by the selection of the short-time window function, there is no short-
time window involved in the WVD. The WVD not only has a higher
frequency resolution close to that of the full-size windowed Fourier transform,
but also provides a higher time resolution. Because of the high resolution
and the accuracy of the time-frequency representation, the WVD can be a
candidate for time-frequency-based image formation. However, there is cross-
term interference associated with the WVD. When the signal contains more
than one component, the WVD will generate cross-term interference between
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components that occurs at spurious locations of the time-frequency plane.
The cross-term possesses a limited energy that reflects the correlation between
the two related terms and is highly oscillatory. Although the cross-term has
a limited contribution to signal energy, it often obscures the useful time-
varying spectrum. To reduce the cross-term interference, the filtered WVD
can be used to preserve the useful properties of the time-frequency transform
with slightly reduced time-frequency resolution and largely reduced cross-
term interference. The WVD with linear low-pass filter is characterized as
a Cohen’s class described in Chapter 2, such as Choi-Williams distribution
[5]; and the distribution with a nonlinear low-pass filter is characterized as
the TFDS [6] as described in Chapter 2.

The TFDS can have higher resolution and lower cross-term interference
depending on its order. When the zero-order is selected, the TFDS is equiva-
lent to the spectrogram of the STFT, and as the order goes to infinity, the
TFDS converges to the WVD. In most applications, the order may be
selected to be 3 or 4.

As a comparison of the time-frequency energy concentration, the instan-
taneous frequency and the instantaneous bandwidth for the STFT, the TFDS
and the WVD, the WVD has highest time-frequency energy concentration or
lowest instantaneous bandwidth, and the instantaneous frequency accurately
reflects the true instantaneous frequency of the signal. Depending on the
order of the distribution, the TFDS has slightly lower time-frequency energy
concentration than the WVD, and can also accurately reflect the true instanta-
neous frequencies of the signal. But the STFT has lower time-frequency
energy concentration and a deviation from the true instantaneous frequencies.
In the example described in [17], the instantaneous bandwidth in normalized
frequency is 0.007 for the WVD, 0.012 for the fourth-order TFDS, and
0.03 for the STFT. Thus, the time-frequency energy concentration of the
STFT is about 4.3 times lower than that of the WVD and about 2.4 times
lower than that of the fourth-order TFDS.

Since high time-frequency energy concentration and low cross-term
interference are desired for the time-frequency-based image formation, in
our simulation we choose the TFDS for its higher time-frequency energy
concentration, lower cross-term interferences, and easier implementation.

Figure 5.6(b) shows the image frame 7 from the sequence of 16 frames
using the time-frequency-based image formation. The blurred image caused
by the target’s fast rotation is now refocused without applying the polar
reformatting. Because the time-varying spectrum is well represented, the
smeared Fourier image is resolved into a sequence of time-varying range
and instantaneous Doppler images. These images not only have superior
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resolution, but also show the Doppler change from one image frame to
another and range walk from time to time [17, 18].

To demonstrate the effectiveness of the time-frequency-based image
formation for measured radar data, we apply both the Fourier-based and
the time-frequency-based image formation to a set of measured radar data
returned from a commercial airplane. The radar parameters are about the
same as described in the simulated example. The data is also formed as a
64 × 512 complex I and Q array matrix. After applying the standard motion
compensation algorithm, the image formed by the Fourier-based image
formation is still blurred as shown in Figure 5.7(a). This is because of the
target’s fast maneuvering during the entire coherent processing interval.
Without knowing its initial kinematic parameters and without resampling
the data, a simple way to form an image of the maneuvering target is to use
a short-windowed or subaperture data. Because of the short time window,
Fourier transform can be adequately applied. However, the Doppler or the
cross-range resolution of the reconstructed image is lower because of the
short-window as we discuss earlier in Chapter 2. Here, we apply the TFDS
described in Chapter 2 to the measured data. The image formed by the
time-frequency-based image formation shows higher Doppler or cross-range
resolution as seen in Figure 5.7(b). The nose, the wings, the wingtips, the
fuselage, the engines, and the tail of the aircraft can be identified clearly. In
the upper center of Figure 5.7 the ground truth of the airplane is given for
comparison.

Figure 5.7 Image of an aircraft: (a) reconstructed with the Fourier-based image formation,
and (b) reconstructed with the time-frequency-based image formation.
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The same time-frequency-based image formation can also be applied
to SAR data. In [22], SAR image generated from the subaperture processing
and the WVD-based processing is discussed, and the benefit of the time-
frequency analysis to SAR data is discussed.

5.5 Radar Imaging of Multiple Targets

Radar imaging of multiple moving targets is an important issue, especially
when targets are rotating or maneuvering, such as multiple aircraft in forma-
tion flying within the same antenna beam, close to each other, and moving
with different velocities or in different directions. The conventional radar
imaging algorithms, which work well for single moving targets, cannot be
directly applied to the multiple-target environment. Returned signals from
these targets are overlapped in time. By simply applying the standard motion
compensation algorithm, the phase correction function calculated from the
Doppler history derived from a group target cannot compensate the phase
error for each individual target. It usually compensates the phase error for
one target but induces phase errors for others. Thus, multiple moving targets
cannot be resolved, and each individual target cannot be clearly imaged.

To address the issue of multiple targets, we will discuss multitarget
resolution in Section 5.5.1. When each individual target has its own radial
velocity or Doppler history that is different from others, the time-frequency
transform can be used to image each individual target [23–25]. In Section
5.5.2 we discuss how time-frequency-based phase compensation can be
applied to imaging of multiple targets. In Section 5.5.3 we extend the time-
frequency-based image formation algorithm to radar imaging of multiple
targets. Targets can be either point-targets or extended targets, and can have
either translational motion or rotational motion and maneuvering [17, 23].

5.5.1 Multiple-Target Resolution Analysis

When a number of targets are within the same radar antenna beam, the
returned signal from L targets can be expressed as the summation of the
returned signals from individual targets described in (5.12):

s S(t ) = ∑
L

k=1
EEEr k (x , y , z ) (5.23)

expH−j2pF2f0
c

Rk (t ) + xf kx (t ) − yf ky (t )GJdxdydz
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where r k (x , y , z ) is the reflectivity function at (x , y , z ) in the k th target,

f kx =
2f0
c

cosuk (t ) and f ky =
2f0
c

sinuk (t ) are the associated components of

spatial frequencies, and Rk (t ) and uk (t ) are the range and the rotation angle
of the k th target, respectively.

The phase of the returned signal from the k th target is

Frk (rt ) =
4p f0

c
[Rk (t ) + x cosuk (t ) − y sinuk (t )] (5.24)

Thus, the Doppler frequency shift due to translational motion is

fDTrans ,k =
2f0
c

VR ,k =
2
l

VR ,k (5.25)

and the Doppler frequency shift due to rotational motion is

fDRot ,k =
2f0
c

[−(x sinu0k + y cosu0k )Vk − (x cosu0k − y sinu0k )V2
k t ]

(5.26)

where VR ,k is the initial radial velocity, u0k is the initial rotation angle, and
Vk is the angular velocity of the k th target.

When multiple targets are close to each other and, thus, cannot be
separated in range, the only approach to separating these targets is to utilize
their Doppler frequency differences.

Figure 5.8(a) illustrates two targets flying along a straight-line flight
path with the same velocity V. Assume that the distance between the two
aircraft is d , and the range from the radar to the midpoint between the two
aircraft is R . The angle between the direction of the flight path and the
LOS from the radar to the targets 1 and 2 are f1 and f2, respectively. The
point, whose corresponding angle is f = (f1 + f2)/2, should be located
near the midpoint between the two targets. Therefore, the Doppler difference
between the two targets becomes

D fD12
= fDTrans ,1 − fDTrans ,2 =

2V
l

(cosf1 − cosf2) (5.27)

= −
2V
l S2 sinf sin

f1 − f2
2 D = −

2V
l

d
R

sinf sinf2
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where we use the equation

sin
f1 − f2

2
=

d
R

sinf2
2

If f ≈ f2, we have

D fD12
≈ −

2V
l

d
R

sin2f (5.28)

Let us examine some instances in which multiple targets can be
separated. Assuming the radar is operating at X-band (l = 0.033m), and
V = 60 m/sec, d = 20m, and R = 20,000m, the Doppler difference, as a
function of the angle f , at f = 90 and 270 degrees, reaches a maximum
value of 3.5 Hz as shown in Figure 5.8(a). To distinguish two targets, a
coherent processing time of 0.28 sec is needed. If the angle f is away from
90 or 270 degrees, the Doppler difference becomes smaller. Thus, a longer
coherent processing time, which may cause image blurring, is required to
resolve two targets. When the angle f approaches 0 or 180 degrees, it is
impossible to distinguish these two targets.

Figure 5.8(b) illustrates another example of two targets lined up and
flying in the same direction. In this case, the Doppler difference between
the two targets becomes

D fD12
= fDTrans ,1 − fDTrans ,2 =

2V
l

(cosf1 − cosf2)

= −
2V
l S2 sin

f1 + f2
2

sin
f1 − f2

2 D (5.29)

= −
2V
l F2 sinS d

2R
+ f2D sinS d

2R DG
If d /R is very small, then

D fD12
≈ −

2V
l

d
R

sinS d
2R

+ f2D (5.30)

For the same parameters V, d , and R given above, a function of the angle
f2 the Doppler difference at f2 = 90 and 270 degrees reaches the same
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Figure 5.8 Geometry of (a) two aircraft flying along a straight-line path; (b) two aircraft lined-up and flying in the same direction; and (c) two
aircraft at the same range but moving in different directions, and their corresponding Doppler difference as a function of the angle.



117Time-Frequency-Based Radar Image Formation

maximum value of 3.5 Hz as shown in Figure 5.8(b). When the angle f2
approaches 0 or 180 degrees, the Doppler difference approaches zero; thus,
it is impossible to distinguish these two targets.

In the case of multiple targets at the same range but moving in different
directions as shown in Figure 5.8(c), the Doppler difference between two
targets with angle f1 and f2 becomes

D fD12
= fD1

− fD2
=

2V
l

(cosf1 − cosf2) (5.31)

= −
2V
l S2 sinSDf

2
+ f2D sin

Df
2 D

If f2 = 180 degrees, then

D fD12
=

2V
l S2 sin2Df

2 D (5.32)

where Df is the difference between the direction angles of the two targets.
From (5.31), if V = 60 m/sec, R = 20,000m, and Df = 0.1 degree, as

a function of the angle f2, at f2 = 90 and 270 degrees, the Doppler
difference reaches a maximum value of 6.35 Hz as shown in Figure 5.8(c).
To distinguish two targets, a coherent processing time of 0.16 sec is enough.
When the angle f2 approaches 0 or 180 degrees, the Doppler difference
approaches zero, and it is also impossible to distinguish these two targets.

From the first two examples, we can ascertain that when targets are
flying in the same direction, the Doppler difference between targets is rela-
tively small. With a longer coherent processing time, multiple targets may
be resolved. When, however, targets are flying in different directions as shown
in the third example, the Doppler difference is relatively large depending on
the angle difference of their flying directions.

If targets have rotational motion or different velocities, they will have
different Doppler histories. By using conventional motion compensation
algorithms, an image of multiple targets becomes smeared. In these cases,
time-frequency algorithms may help for imaging of multiple targets.

5.5.2 Time-Frequency-Based Phase Compensation for Multiple
Targets

When a number of targets are within the same antenna beam, close to each
other in range, and moving with different velocities or in different directions,
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each individual target has its own Doppler history. Although these targets
are difficult to separate in range, the difference in Doppler histories can be
used to resolve multiple targets. An approach to separate different Doppler
histories is to apply the time-frequency transform to the time history series
data at range cells where targets are located [23–25]. From each individual
time-frequency distribution that associates with each specific target, Doppler
history of that target is obtained. By taking the time-integral of the Doppler
history, the phase history function associated with that target can be found.
Then, multiplying the conjugate of the phase history function to the raw
radar data, the phase function associated with the specific target will be
compensated and its Doppler frequency shift becomes time-invariant. Thus,
the Fourier transform can be adequately applied to reconstruct the image
of that specific target. To image multiple targets, the above procedure of
phase compensation must be applied to each of the targets separately as
illustrated in Figure 5.9 where three targets are imaged using three different
phase functions.

If, however, a target has rotational motions, the phase compensation
procedure described above may not work well and, thus, images of multiple
moving targets may not be well focused.

Here is an example of two targets, each of which has a circular motion
around its own center point as shown in Figure 5.10(a). Radar is located at
(X = 0, Y = 0), and the two targets start their circular motion from a same

Figure 5.9 Conventional time-frequency approach to multiple targets.
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Figure 5.10 (a) Trajectories of two simulated targets with circular motion; (b) radar imaging
of multiple targets using time-frequency-based phase compensation and
Fourier transform; and (c) radar imaging of multiple targets using time-
frequency transform.

initial point at (X = 1,600m, Y = 1,600m). Target 1 has a circular motion
around a center at (X = 1,600m, Y = 1,550m) and with a rotation rate
0.04 rad/sec or 2.29 degrees/sec. Target 2 has a rotation rate of 0.02
rad/sec or 1.15 degrees/sec around a center at (X = 1,600m, Y = 1,100m).
Because of the rotation, each scatterer on the target has its own unique
combined translational and rotational motions, and therefore, has its own
Doppler history. In this case, the simple phase compensation algorithm
cannot remove Doppler drifts of all the individual scatterers. Thus, the image
of each individual target still can be smeared, and multiple targets cannot
be seen as shown in Figure 5.10(b).

5.5.3 Time-Frequency-Based Image Formation for Radar Imaging of
Multiple Targets

In cases where the phase compensation algorithm does not work well for
multiple rotating or maneuvering targets, we can apply the time-frequency-
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based image formation. As discussed in Section 5.4.2, the time-frequency-
based image formation works well in cases where each individual scatterer
of the target has its own range and Doppler history, such as scatterers in
multiple targets with rotations. When we apply the time-frequency-based
image formation, multiple targets can be identified from a sequence of range
and instantaneous Doppler image frames. The target can be either a point
target or an extended target; and the target’s motion can be either translational
or maneuvering. Figure 5.10(c) shows the two separated aircraft reconstructed
by the time-frequency-based image formation compared with the smeared
one in Figure 5.10(b) where the phase compensation algorithm is applied.

5.6 Summary

In this chapter, we introduced a new radar image formation called the time-
frequency-based image formation. Compared to the Fourier-based image
formation, the time-frequency approach works well for maneuvering targets.
In principle, any time-frequency transform can be used for radar image
formation. We use the TFDS because of its higher resolution and lower
cross-term interference. However, any other time-frequency transform with
higher resolution and lower cross-term interference can also be used. The
time-frequency-based image formation can be used for either ISAR or SAR
image formation and works well in either single-target or multiple-target
environments.
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6
Motion Compensation in ISAR Imaging
Using Time-Frequency Techniques

As discussed in the last chapter, radar imaging is a process of mapping the
electromagnetic reflectivity of a target from multiple-frequency, multiple-
aspect data. Frequency diversity can be fairly easily achieved by the built-in
bandwidth of the radar sensor. Angular diversity, on the other hand, must
be acquired through the relative movement between the target and the sensor.
In SAR, the sensor is moved around the target to acquire the necessary
angular data, while in ISAR imaging, the stationary sensor collects multiple
aspect data through target movement. For instance, a ground-based radar
observing an in-flight aircraft over a sufficient time interval can collect data
needed to form an ISAR image.

One of the main challenges in ISAR image formation is the unknown
nature of the target motion. Ideally, if the target has no translation motion
and only uniform rotational motion, then a simple Fourier transform process
would bring a set of range profiles collected over a given dwell time (i.e.,
the coherent processing interval) into a focused 2D image. However, this is
never true in real-world ISAR imaging scenarios, as the target being imaged
is often engaged in complicated maneuvers that combine translation and
rotational motions. Therefore a process called motion compensation must
be counted on to form a focused image of the target. This is a blind process
since the radar data is the only available information. Two basic assumptions
are usually used to aid us in this difficult task, namely, the point-scatterer
model and the rigid body assumption.

123
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In this chapter, we examine the use of time-frequency analysis for
achieving ISAR motion compensation. In Section 6.1, we review some of
the existing motion compensation algorithms for translation motion and
rotational motion removal. In Section 6.2, we introduce an adaptive joint
time-frequency (AJTF) procedure for extracting the phase of a prominent
point-scatterer on the target from the radar data. We show how the extracted
phase information can be used in conjunction with the prominent point
processing (PPP) model to achieve motion compensation. In Section 6.3,
we illustrate this algorithm using both simulation and measurement data.
In Section 6.4, we discuss the case when the rotational motion of the target
is not confined to a 2D plane.

6.1 Motion Compensation Algorithms

In real-world ISAR data collection, the target being imaged is usually engaged
in complex maneuvers that combine translation and rotational motions (see
Figure 6.1). Unless a good motion compensation algorithm is implemented,
serious blurring can result in the ISAR image formed by the Fourier transform,
which assumes that all the point-scatterers in a range cell behave with linear
phase across different pulses. A motion compensation algorithm typically
consists of two parts, range alignment and Doppler tracking. Among all

Figure 6.1 Complex target motion during ISAR image collection can be considered a
combination of translation and rotational motions with respect to the radar.
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the existing motion compensation algorithms, the manner in which range
alignment is performed is fairly standard. It is accomplished by tracking the
movement of a reference point (such as a prominent peak or the centroid
of the range profile) across multiple pulses and fitting it to a low-order
polynomial [1]. The result of such coarse range alignment is illustrated in
Figure 6.2(a). The coarse range alignment allows a point-scatterer to be
sorted into the same range bin across all the pulses. However, the accuracy
of the alignment is limited by the range resolution, which is typically tens
of centimeters. This is not sufficient to overcome the phase errors measured in
terms of the radar operating wavelength, which is typically a few centimeters.
Consequently, Doppler tracking must be carried out to align the phase.
There are many different schemes to perform Doppler tracking, including
the sub-aperture approach [2–4], the cross-range centroid tracking approach

Figure 6.2 (a) Range profile versus pulse number after coarse range alignment; and
(b) time-frequency representation of the signal in range bin i and the search
procedure for the best basis hp (t ).
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[5], and the phase gradient autofocus (PGA) technique [6]. These methods
consider the Doppler frequency shifts of the target as a whole, and apply
the same correction vector to all of the scatterers in the image. This is
effective when translation motion is dominant.

When the coherent processing interval is long or when the target
exhibits fast maneuvers, the phase error due to the nonuniform rotational
motion is often not negligible and must also be properly compensated. One
useful scheme to carry out this operation is the multiple PPP algorithm
[7, 8]. The basic idea of the multiple PPP algorithm is to track one or more
point-scatterers in the image in order to extract the motion parameters. Once
the motion parameters are known, compensation of both translation and
rotational motions can be achieved. The main challenge in applying the
multiple PPP algorithm is the selection of the prominent point-scatterers,
which should ideally be well isolated in their respective range cells. In practice,
such kinds of point-scatterers may be difficult to pinpoint or not available
at all.

As was described in Chapter 5, time-frequency analysis is an attractive
way to address the Doppler tracking issue in motion compensation [9, 10].
Specifically, in [10], it was shown that by applying the TFDS [11] described
in Section 2.2.3 in place of the Fourier transform engine, the ISAR image
can be effectively examined at each dwell time instance, thus eliminating
range drift and Doppler smearing. Unfortunately, the TFDS is based on
the WVD and does not preserve the phase information of the original image.
Such information may be important for subsequent feature extraction or
feature matching operations in target identification. Furthermore, the Dopp-
ler resolution achievable in this manner is still less than that offered by the
total dwell time interval of the original data. In the next section, we describe a
time-frequency-based procedure for achieving both translation and rotational
motion compensation [12, 13]. An adaptive procedure extended from the
adaptive spectrogram [14] discussed in Section 2.1.3 is used to select and
extract the phase of multiple prominent point-scatterers on the target. The
extracted phase is then coupled with the multiple PPP model to eliminate
the undesirable motion errors in the original radar data. In this manner, the
phase of the focused image is preserved and the Doppler resolution offered
by the full coherent processing interval can be achieved.

6.2 Time-Frequency-Based Motion Compensation

We first introduce the standard motion model, which has been alluded to
in Chapter 5, for describing the radar signal. The model is based on the



127Motion Compensation in ISAR Imaging Using Time-Frequency Techniques

rigid-body, point-scatterer assumption. The target is assumed to contain
both translation and rotational motions. However, coarse range alignment
is assumed to have been applied to the data so that the point-scatterers have
been sorted into their respective range cells [Figure 2(a)]. The target is
assumed to have a dominant rotational axis during the imaging interval (see
Section 6.4 for discussions on the more general case when this assumption
does not hold). We can then express the radar received signal within a
particular range cell at x as

sR (t ) |
x

= ∑
Nk

k=1
Ak expH−j

4p f0
c

[R (t ) + x cosu (t ) − yk sinu (t )]J (6.1)

where the x -axis is the down-range direction. In (6.1), f0 is the center
frequency of the radar and t denotes the dwell time (which is proportional
to the pulse number). Nk is the number of point-scatterers within the range
cell and all of them share the same down range position x . Ak and yk are
respectively the magnitude and cross range position of the k th point-scatterer.
R (t ) describes the residual uncompensated translation displacement and u (t )
is the rotation angle as a function of dwell time (measured from the center
of the imaging interval). As shown in (5.2) and (5.3), we expand R (t ) and
u (t ) into their respective Taylor series as follows:

R (t ) = R0 + VR t +
1
2

aR t2 + . . . (6.2)

u (t ) = Vt +
1
2

g t2 + . . . (6.3)

By substituting these expressions into (6.1) and taking the leading
terms, we obtain

sR (t ) |
x

= ∑
Nk

k=1
Ak expH−j

4p f0
c

[(R0 + x ) + (VR + Vyk )t (6.4)

+
1
2

(aR − V2x + gyk )t2 + . . . ]J
The constant phase term is not relevant to the imaging process and

can be ignored. Note that if R (t ) = R0, u (t ) = Vt and (Vt )2 is negligible,
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then the phase function is a pure linear function of time. This is the ideal
case when a simple Fourier transform will focus the point-scatterers to their
respective yk positions in the cross-range dimension. The resulting cross-
range resolution is inversely proportional to the total imaging time interval.
However, when the quadratic (and higher-order) term in the phase function
is significant, simple Fourier processing will lead to image blurring. The goal
of the motion compensation algorithm is to estimate and eliminate the
quadratic (and higher-order) phase terms.

6.2.1 Estimating Phase Using Adaptive Time-Frequency Projection

We observe that the quadratic phase term in the uncompensated radar signal
under consideration behaves like a linear chirp in the time-frequency plane.
As shown in Figure 6.2(b), the dwell-time and Doppler-frequency trajectories
of the point-scatterers within a given range cell are straight lines. The displace-
ment and slope of each line are related respectively to the linear and quadratic
coefficients of their phase function. The task at hand is to determine these
coefficients for the dominant point-scatterer within the range cell. We con-
sider here a time-frequency procedure extended from the adaptive Gaussian
representation discussed in Section 2.1.3. More general algorithms for the
decomposition of signals using chirp basis can be found in [15, 16]. In our
present problem, the point-scatterers have already been aligned in range and
it is not necessary to take into account the amplitude variation in the basis
function. We do, however, add an additional quadratic (and possibly higher-
order) phase term in the basis function as follows:

hp (t ) = expF−j2pS fD0
t +

1
2

fD1
t2 + . . . DG (6.5)

The above set of bases can be thought of as a collection of unit chirps,
each with a different displacement and chirp slope [shown as a dashed line
in Figure 6.2(b)]. Next, we carry out a search procedure (as in the adaptive
spectrogram) to determine the best basis by projecting the radar signal
onto all possible bases of the form (6.5). We search the parameters
( fD0

, fD1
, . . . ) that satisfy

< fD0
, fD1

, . . . > = argmax |E sR (t ) |
x
hp* (t )dt | (6.6)

Equation (6.6) implies that the parameters in the phase function are
estimated to give the maximum projection from the radar data onto the
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basis function. In the adaptive spectrogram, this procedure is iterated to try
to parameterize the total signal. However, in the present application, only
the strongest point-scatterer within a range cell is searched. Because of the
rigid body assumption, the motion parameters in (6.2) are carried by every
point-scatterer on the target. We choose to use only the dominant scatterer
in a range cell in order to avoid estimation errors for the weaker scatterers.
The search for the linear coefficient fD0

can be accomplished by using the
fast Fourier transform. Then only a 1D search is required to find fD1

, the
quadratic coefficient. This procedure can also be extended for cubic and
higher-order coefficients, at the expense of more computation time. In terms
of performance, the algorithm is equivalent to picking out the strongest line
in the time-frequency plane with the full Doppler resolution offered by the
total coherent processing interval. Also, this projection algorithm applies
even when there is not an isolated, dominant point-scatterer in the range
cell.

6.2.2 Motion Error Elimination

With the AJTF procedure for estimating the phase of individual point-
scatterers in hand, the next task is to eliminate those quadratic phase terms
for all the scatterers. This can be accomplished by the standard multiple
PPP algorithm [7, 8]. We consider here the case when (Vt )2 << 1 so that
this term can be neglected in the phase. This is usually a good approximation
for high-frequency radars (X-band and above), as the angular window needed
to form an image with sufficient cross-range resolution is quite small in
absolute terms (i.e., a few degrees). With the approximation, (6.1) becomes

sR (t ) |
x

= ∑
Nk

k=1
Ak expH−j

4p f0
c F(VR + Vyk )t +

1
2

(aR + gyk )t2GJ
(6.7)

We observe that the quadratic phase coefficient consists of two terms.

The first term, S1
2

aR t2D, represents the translation motion error and is

independent of the cross-range y. The second cross-range-dependent term,

S1
2

gyk t2D, represents the rotational motion error. We first carry out the

translation motion compensation by extracting the phase of a prominent



130 Time-Frequency Transforms for Radar Imaging and Signal Analysis

point-scatterer located at (x1, y1) using the AJTF search. The estimated
phase is denoted as

expF−j2pS fD01
t +

1
2

fD11
t2DG (6.8)

We then multiply the radar data by the conjugate of (6.8). Based on
the model, the phase of an arbitrary point-scatterer at (x i , y i ) on the target
is reduced to

expH−j
4p f0

c F( y i − y1)SVt +
1
2

g t2DGJ (6.9)

As can be seen from (6.9), the translation error has been removed from
the data and only rotational motion error remains. The reference point (x1,
y1) serves as the center of the rotational motion.

Next we carry out the rotational motion compensation by extracting
the phase of a second prominent point-scatterer at (x2, y2):

expF−j2pS fD02
t +

1
2

fD12
t2DG (6.10)

By comparing (6.10) to (6.9), we see that the extracted phase gives
the desired relationship between the rotation angle and the dwell time (up
to a proportionality constant):

u (t ) = Vt +
1
2

g t2 ~ fD02
t +

1
2

fD12
t2 (6.11)

Once this relationship is found, it is possible to reformat the radar
data to eliminate the quadratic phase dependence on dwell time. The original
radar data is uniformly sampled in dwell time t. We interpolate the data
based on (6.11) such that it becomes uniformly sampled in angle u . After
the reformatting, the phase of each point-scatterer is linearly related to the
angle and the residual motion due to nonuniform rotation rate is thus
removed from the data.

To summarize, by extracting the phase of two prominent point-scatter-
ers using the AJTF projection technique, both the translation and rotational
motions can be removed from the radar data. The resulting image is focused
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since all the point-scatterers have linear phase behaviors. Although we have
limited our discussion to quadratic errors, it is straightforward to extend the
algorithm to higher-order motion errors. In addition, we have assumed the
absence of any range-dependent phase errors [e.g., (1/2)(Vt )2x in (6.4)],
which may appear in wide-angle imaging scenarios. Based on the PPP model,
this type of error can also be removed by using three prominent point-
scatterers [13].

6.3 Motion Compensation Examples of Simulated and
Measured Data

Simulated radar data from a Boeing 727 airplane is used as an example to
demonstrate the AJTF motion compensation procedure. The center fre-
quency of the radar is 9 GHz and the bandwidth is 150 MHz. The total
number of pulses used to form the image is 256. Figure 6.3(a) shows the
ISAR image after range alignment and Doppler centroid focusing. Since
Doppler centroid focusing has only limited accuracy and the target contains
a significant amount of nonuniform rotational motion, only a portion of
the airplane is well focused and the parts away from the focus are seriously
blurred. To describe the underlying mechanisms of autofocusing more explic-
itly, we plot the variation of Doppler frequency versus dwell time in a
particular range cell in the time-frequency plane in Figure 6.3(b). The STFT
is used to generate the spectrogram. Each line in the spectrogram represents
the time-varying Doppler characteristics of a scattering center in the range
cell. The displacement of the line represents the coefficient of the linear
phase term and its slope represents the coefficient of the quadratic term. It
is difficult to accurately extract the desired parameters from such a fuzzy
image due to the low resolution of the STFT. Instead, we use the AJTF
algorithm to search for the phase of the strongest point-scatterer in this
range cell. After multiplying its phase correction to the range-aligned data,
an image with the translation motion error removed is obtained and shown
in Figure 6.4(a). As can be seen from the spectrogram of Figure 6.4(b), the
strongest line has been straightened and shifted to the center of the Doppler
frequency axis. However, rotational motion error remains and the other
point-scatterers in the range bin still exhibit time-varying Doppler. Thus, a
second reference point must be selected to carry out the rotational motion
compensation. After extracting its phase via the AJTF procedure, we carry
out a reformatting operation such that the radar data becomes uniformly
sampled in angle instead of dwell time. As shown in Figure 6.5(a), the
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Figure 6.3 (a) ISAR image of simulated Boeing-727 data after range alignment and Doppler
centroid focusing; and (b) STFT spectrogram of the signal at a chosen range
cell. (Source: [13]  1998 IEEE.)

resulting image is well focused. In the spectrogram of Figure 6.5(b), all the
lines are straightened, implying that the phase errors contained in all
the point-scatterers have been removed. In Figure 6.6, the image from the
simulated data without any added motion errors is shown as a reference of
comparison. As we can see, the motion compensated image achieves the
same sharpness as the reference image.

The AJTF motion compensation algorithm is next demonstrated using
measured ISAR data [17]. The radar data was collected using a ground radar
and the target was an aircraft in flight. Figure 6.7(a) shows the coarsely
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Figure 6.4 (a) ISAR image of simulated Boeing-727 data after translation motion compen-
sation using one prominent point-scatterer; and (b) STFT spectrogram of the
signal at the chosen range cell. (Source: [13]  1998 IEEE.)

aligned range profiles over 128 pulses. Figure 6.7(b) shows the resulting
ISAR image from taking a series of 1D Fourier transforms across the pulse
number (or dwell time). Since significant phase errors still exist in the data,
the image is quite blurry in the Doppler dimension. Figure 6.7(c) shows
the spectrogram of the strongest range cell. It can be seen that the trajectories
of the point-scatterers are tilted. In addition, slight curvature can be noticed
in the trajectories. Therefore, we used polynomials of order three (i.e.,
including linear, quadratic, and cubic terms) in the basis search. We then
multiplied the radar data by the conjugate of the best-fit basis to remove
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Figure 6.5 (a) ISAR image of simulated Boeing-727 data after rotational motion compensa-
tion using a second prominent point-scatterer; and (b) STFT spectrogram of
the signal at the chosen range cell. (Source: [13]  1998 IEEE.)

the residual translation motion. Figure 6.8(a) shows the spectrogram of the
same range bin as Figure 6.7(c). The motion compensation has successfully
straightened the time-frequency trajectories of the point-scatterers. Figure
6.8(b) shows the image formed from the motion-compensated data by using
Fourier processing. The image is now well focused and the shape of the
aircraft is clearly visible. In this image frame, there is negligible rotational
motion error, as additional rotational motion compensation did not further
improve the image quality. To more objectively evaluate the performance
of the blind motion compensation, a truth image was also generated using
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Figure 6.6 Reference ISAR image of simulated Boeing-727 data without any motion error.
(Source: [13]  1998 IEEE.)

the known motion of the aircraft. In this case, the aircraft motion was
recorded independently using a global positioning system (GPS) and an
inertial navigation system (INS) sensor carried on-board the aircraft during
the data collection. This data was used to establish the true target motion
and compensate the radar data to generate the truth image shown in Figure
6.8(c). By comparing Figure 6.8(b) from the blind motion compensation
algorithm to the truth image in Figure 6.8(c), we see that the motion
compensation algorithm performed very well in achieving a focused image
of the target.

To summarize, the AJTF algorithm provides an automatic means of
tracking the phase of one or more point-scatterers in the radar data with
high resolution. This algorithm, when combined with the multiple PPP
model, is shown to be an effective method of achieving both translation and
rotational motion compensation for ISAR imaging. The resulting complex
I and Q data is free of phase errors and leads to a well-focused ISAR image.
This algorithm has been tested using both simulation and measured data
sets.

6.4 Presence of 3D Target Motion

A fundamental assumption in the motion model shown in (6.1) is that the
rotational motion of the target is confined to a 2D plane during the coherent
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Figure 6.7 ISAR image formation from measured data: (a) range profiles versus dwell
time after range alignment; (b) resulting ISAR image; and (c) spectrogram of
the strongest range cell.
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Figure 6.8 ISAR image formation from measured data: (a) spectrogram of the strongest
range cell after AJTF motion compensation; (b) resulting motion-compensation
image; and (c) truth image formed using actual motion data. (Source: [17]
 1999 SPIE.)
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processing interval. We shall use the term 2D motion to refer to target
rotation of this type. We also saw how under this assumption, the rotational
motion can be fully compensated by tracking the phase of a second point-
scatterer on the target. However, for aircraft undergoing fast maneuvers or
ships on rough seas, the motion of a target may be more chaotic and does
not always obey the 2D motion model [17–19]. As a result, the application
of a motion compensation algorithm based on the 2D motion model to
such intervals can lead to blurry images. In this section, we discuss the case
when there exists 3D target motion during the imaging interval (i.e., when
the rotational motion is not confined to a 2D plane). Alternatively, we can
think of this type of motion as having a time-varying rotational axis during
the imaging interval. Figure 6.9(a) shows an image formed using the same
data set and the same motion compensation algorithm as those used for
Figure 6.8(a), except the data is from a different time interval. The severe
image blurring can be attributed to 3D motion. In Figure 6.9(b), we plot
the truth motion data generated from on-board motion sensors. It shows
the pose angles (both azimuth and elevation) of the target with respect to
the radar during the imaging interval. During the first half of the 128 records,
the aircraft undergoes rotation primarily along the elevation dimension, while
during the second part it undergoes rotation along the azimuth dimension.
If this information were available, we could avoid choosing such an imaging
interval. However, we do not usually have access to the attitude data on
non-cooperative targets. In such cases, the questions of how to detect the
presence of 3D rotational motion and how to pinpoint the ‘‘good imaging
intervals’’ where the target obeys the 2D motion model must be addressed.
We describe here an algorithm based on the same AJTF engine to detect
blindly the presence of 3D motion based on the radar data alone [20, 21].

Let us begin our discussion by considering the 2D and 3D rotational
motion models. We shall assume the target rotational angle is small and we
can apply the small-angle approximation (cosu ≈ 1, sinu ≈ u ) to (6.1). The
2D model is then given by:

sR (t ) |
x

= ∑
Nk

k=1
Ak expH−j

4p f0
c

[R (t ) + x + y ku (t )]J (6.12)

where u is the rotational angle in the 2D plane. When 3D motion exists,
this model must be augmented to account for rotational motion in both u
and the orthogonal f directions. The 3D model is given by
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Figure 6.9 (a) ISAR image after AJTF motion compensation for an image frame containing
significant 3D rotational motion; and (b) pose angles of the target with respect
to the radar during the imaging interval derived from truth motion data. (Source:
[17]  1999 IEEE.)

sR (t ) |
x

= ∑
Nk

k=1
Ak expH−j

4p f0
c

[R (t ) + x + y ku (t ) + zkf (t )]J
(6.13)

where another independent angular parameter f is introduced to describe
the 3D rotational motion (see Figure 6.10), and (x , yk , zk ) are the 3D
spatial positions of the point-scatterers in the range cell. It can be shown
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Figure 6.10 Geometry of the ISAR problem involving 3D motion.

that the 3D model reduces to the 2D model under two conditions. The
first is when there exists a linear relationship between u and f [i.e.,
u (t ) = af (t )]. The second is when the z -dimension of the target is small
and the third phase term can be ignored. When these conditions are not
met, the full 3D model must be used and any motion compensation algorithm
based on the 2D model will not focus the target well. Figure 6.11 shows
the result of the point-scatterer simulation. Figure 6.11(a, b) are respectively
the assumed rotational motions used in the simulation and the resulting
motion-compensated image based on the 2D model. As can be seen from
these two figures, the assumed relationship between u and f is a linear one
and the image is easily focused using the 2D motion compensation algorithm
described in Section 6.2. Figure 6.11(c, d) show the case when 3D motion
is present. After two-point focusing, the two points in the chosen range cells
25 and 57 are indeed focused. Another point-scatterer in range cell 99 is
also focused, as it happens to be in the same 2D motion plane as the point-
scatterer in range cell 57. However, the rest of the point-scatterers remain
unfocused.

Since 2D motion can be represented by a linear relationship between
u and f , we should be able to detect the presence of 3D motion if we can
detect the existence of a nonlinear relationship between u and f . Next, we
show how this can be detected from the phase functions. We assume that
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Figure 6.11 Point-scatterer simulation showing the effect of 3D motion on image formation:
(a) assumed 2D motion; (b) resulting image after motion compensation;
(c) assumed 3D motion; and (d) resulting image after motion compensation.
(Source: [21].)

translation motion has already been removed from the data and the time-
varying phase of a point-scatterer is given by

Pi (t ) = yiu (t ) + z if (t ) (6.14)

If u and f are linearly related via u (t ) = af (t ), then the phases of any
two point-scatterers

P1(t ) = ( y1a + z1)f (t ) (6.15)

P2(t ) = ( y2a + z2)f (t )

must also be linearly related as follows:
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P2(t ) =
( y2a + z2)
( y1a + z1)

P1(t ) (6.16)

We conclude that if the rotational motion of the target is 2D, then
the phase relationship between two scatterers must be related linearly. Con-
versely, if the phase relationship is not linear, there must exist 3D rotational
motion on the target. Thus, by extracting the phases of two or more point-
scatterers on the target using the AJTF algorithm and measuring the degree
of nonlinearity between them, we can detect the presence of 3D motion.

We demonstrate the concept using a set of measured radar data of an
aircraft. Figure 6.12 shows the degree of phase nonlinearity detected from
20 discrete frames in the data set. The corresponding imaging interval for
each frame is 2.3 seconds, while the total flight duration is approximately
5 minutes. As we can see, there are several frames where 3D motions are
significant. To corroborate this result, we examine the actual motion data
at frames 2 and 18. Frame 2 has very small detected phase nonlinearity
while frame 18 has very large phase nonlinearity. Shown in Figure 6.13(a, b)
are the corresponding u versus f plots obtained for these two frames from
the truth motion data. The actual motions are shown in the solid curves
while the dashed lines are the best-fit linear approximations. It is clear from
Figure 6.13(a) that the target motion in frame 2 is indeed very close to a
pure 2D one. Figure 6.13(b) for frame 18, on the other hand, shows that
the motion during this frame deviates significantly from a 2D one. Thus,
the detected phase nonlinearity is a good indicator of 3D target motion.
Figure 6.13(c, d) shows the respective images formed at these two frames
using the AJTF motion compensation algorithm. As expected, the image

Figure 6.12 Detected phase nonlinearity indicating 3D motion from aircraft radar data.
(Source: [21].)
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Figure 6.13 (a) Look angles on the target during the imaging interval derived from truth
motion data for frame 2. The solid curve is the actual motion and the dashed
line is the best-fit linear approximation; (b) look angles for frame 18 showing
significant 3D motion; (c) resulting motion-compensated image for frame 2
showing a well-focused image; and (d) motion-compensated image for frame
18 showing significant blurring in the Doppler dimension.

for frame 2 is very well focused while the image for frame 18 is blurred in
the Doppler dimension.

To summarize, we have shown that the existing motion compensation
algorithm based on the 2D motion assumption cannot properly focus targets
exhibiting 3D rotational motion during the imaging interval. We also showed
that it is possible to detect the presence of 3D motion by measuring the
phase nonlinearity between two or more point-scatterers on the target. The
phase estimation can again be achieved effectively using the AJTF algorithm.
Therefore, it is possible to distinguish the time intervals when the target
undergoes smooth 2D motion from those containing more chaotic 3D
motion. As a result, the good imaging intervals, where focused images are
more easily formed, can be pinpointed in the data.
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7
SAR Imaging of Moving Targets

SAR images are a high-resolution map of surface target areas and terrain in
the range and the cross-range dimension [1–4]. If there are moving targets
in the scene, SAR cannot simultaneously produce clear images of both these
stationary targets and moving targets. Usually, moving targets appear as
defocused and spatially displaced objects superimposed on the SAR map.
Therefore, how to detect and clearly image moving targets becomes an
important issue.

There are three basic issues for SAR imaging of moving targets: (1)
how to detect moving targets [moving target indication (MTI)] in the
background of stationary objects called clutter; (2) how to focus images of
moving targets; and (3) how to place the detected moving targets into their
true location in the SAR scene.

Using the MTI function, radar returns from terrain and stationary
objects can be suppressed; only the returns from moving targets are used to
reconstruct radar images. For focusing the image of detected moving targets,
many algorithms that compensate for the target’s motion and make phase
corrections can be used. Because of the additional Doppler shift caused by
target motion, the detected and focused target is not necessarily located in
its true location in the SAR scene. To relocate it, a multiple-aperture antenna
array may be used in the SAR system.

We will discuss radar returned signals from moving targets in Section
7.1 and analyze the effect of target motion on SAR image in Section 7.2.
Then, we will review various approaches to detection and imaging of moving
targets in Section 7.3. Finally, in Section 7.4 we will introduce how time-
frequency transforms can be used for SAR imaging of moving targets.

147
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7.1 Radar Returns of Moving Targets

When targets are moving, the motion-induced phase errors, which interact
with the matched filter processing or cross-range compression, cause these
images to be mislocated in the cross-range dimension and smeared in both
the cross-range and the range domains.

Figure 7.1 illustrates the geometry of a side-looking SAR and a moving
target. An aircraft carrying a radar platform is flying along the x -direction
with a speed v and at an altitude h. The radar transmits a LFM signal

sT (t ) = expH j2pS f0t +
h
2

t2DJ (0 ≤ t ≤ T ) (7.1)

where f0 is the carrier frequency, h is the frequency modulation rate, T is
the time duration of the signal, and the amplitude is normalized to unity.

The returned signal from a stationary point-scatterer is

s R (t ) = C0 expH j2pF f0(t − t ) +
h
2

(t − t )2GJ (0 ≤ t ≤ T )

(7.2)

where the constant C0 is determined by the scatterer’s reflectivity and the
antenna’s two-way azimuth pattern, t = 2R /c is the two-way time delay,

Figure 7.1 Geometry of an airborne side-looking SAR and a moving target.
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and R is the range from the radar to the stationary point-scatterer. For
simplicity, we assume that the reflectivity of the scatterer is 1. Thus, the
baseband signal becomes

s B (t ) = C0 expH−j2pF f0t −
h
2

(t − t )2GJ (7.3)

= C0 exp{−jF(t )} (0 ≤ t ≤ T )

where the phase function

F(t ) = 2pF f0t −
h
2

(t − t )2G =
4pR

l
− phSt −

2R
c D

2

(7.4)

and the wavelength l = c /f0, where c is the speed of electromagnetic wave
propagation.

After range compression, the baseband output of the return from the
stationary scatterer can be expressed as

s0(t ) = C0 expH−j
4pR

l J sincFphdTSt −
2R
c DG (7.5)

where dT is the width of the compressed pulse. When t = 2R /c ,
sinc[phdT (t − 2R /c )] = 1 and the peak value of the baseband output signal
becomes

s0(t = 2R /c ) = C0 expH−j
4pR

l J (7.6)

7.1.1 Range Curvature

For a side-looking SAR, if the radar is moving along the x -direction with
a speed of v, then the range from the radar to the point-scatterer becomes
a function of x and can be expressed as follows [1]:

R (x ) ≅ Rmin +
x2

2Rmin
(7.7)

where x = vt and Rmin is the minimum range between the radar and the
point-scatterer along the flight track. At time t = 0, the range reaches its
minimum value of Rmin.
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Assume during the time interval DT (i.e., from t = −DT /2 to t =
+DT /2) that the radar can see the point-scatterer within its antenna beam-
width. At time t = ±DT /2, the range reaches its maximum value

Rmin +
(DT /2)2

2Rmin
. Thus, the range walk induced by the radar motion, which

is also called the range curvature (shown in Figure 7.2), is

DR =
(DT /2)2

2Rmin

Therefore, to eliminate the range walk, we must carefully select the interval
DT and the minimum range Rmin to make sure that DR is within the size
of range resolution cell.

7.1.2 Clutter Bandwidth

By substituting R in (7.6) with (7.7), the signal can also be expressed as a
function of x :

Figure 7.2 Range curvature induced by radar motion.
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s0(x ) = C0 expH−j
4pR (x )

l J
= C0 expH−j

4pRmin
l J expH−j

2p
l

x2

Rmin
J (7.8)

= C expH−j
2p
l

x2

Rmin
J

where C includes the constant C0 and a constant phase 4pRmin /l . The
equation (7.8) is the representation of the stationary scatterer in the cross-
range domain. The phase of the output base-band signal of the stationary
scatterer becomes

F(x ) =
2p
l

x2

Rmin
(7.9)

After applying a matched filtering to the base-band signal in (7.8), the
quadratic phase (7.9) is removed and a clear image of the stationary point-
scatterer can be seen.

For detection and imaging of moving targets, stationary objects are
usually considered as clutter. If we know the bandwidth of the clutter, it
may be suppressed by filtering in the frequency domain.

The clutter bandwidth is equal to the Doppler bandwidth of the base-
band signal returned from stationary objects, which can be derived from the
time derivative of the phase function (7.9)

BWClutter =
1

2p
dF(x = vt )

dt
=

2
l

vt
Rmin

v (7.10)

The magnitude of the maximum clutterer bandwidth is

|BWClutter | =
2
l

vDT
Rmin

v ≅
2
l

b3dBv (7.11)

where

b3dB ≅
vDT
Rmin
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is the 3-dB antenna beamwidth at range Rmin without coherent Doppler
processing and was derived in [5]. Knowing the maximum clutter bandwidth,
clutter can be suppressed by applying a high-pass filtering to suppress energy
within the clutter bandwidth.

7.1.3 Analysis of Radar Returns from Moving Targets

Based upon the discussion on radar returns from stationary targets, we can
now discuss radar returns from moving targets. Assume that at t = 0 a point
target is located at (x0, y0) and the radar platform is located at (x = 0,
y = 0, z = h ) as illustrated in Figure 7.1. When the target moves with a
velocity vy and acceleration ay in the radial direction, and a velocity vx and
acceleration ax in the x -direction, and when the radar moves with a velocity
v along the x -direction, then at time t the target moves to (x0 + vx t +
ax t2/2, y0 + vy t + ay t2/2, 0) and the radar moves to (x = vt , y = 0, z = h )
as shown in the figure. The range from the radar to the point target at time
t becomes

R (t ) = [(vt − vx t − ax t2/2 − x0)2 + ( y0 + vy t + ay t2/2)2 + h2]1/2

= [R 2
radar (t ) + R 2

target (t )]1/2 (7.12)

where the range component due to the radar motion is

Rradar (t ) = [(vt − x0)2 + y2
0 + h2 ]1/2

and the range component due to the target motion is

Rtarget (t ) = [(vx t + ax t2/2)2 + (vy t + ay t2/2)2

− 2(vt − x0)(vx t + ax t2/2) + 2y0(vy t + ay t2/2)]1/2

By taking Maclaurin series expansion

R (t ) ≅ R (t ) | t=0 +
dR (t )

dt |
t=0

t +
1
2

d 2R (t )

dt2 |
t=0

t2 (7.13)

a simplified expression of R (t ) can be derived as
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R (t ) ≅ R0 +
x0vx + y0vy − x0v

R0
t +

v2 + v2
x + v2

y + x0ax + y0ay − 2vvx

2R0
t2

(7.14)

where R0 = R (t ) |
t=0

= (x2
0 + y2

0 + h2)1/2 >>x0 is the initial range at t = 0.

Because x0 is much smaller than R0 and y0 is approximately equal to
R0, then the baseband return from the moving target can be derived from
(7.6) as

s0(t ) = C0 expH−j4p
R (t )

l J
≅ C expH−j2p

2vy

l
tJ expH−j

4p
l

[(v − vx )2 + v 2
y + R0ay ]

t2

2R0
J

= C exp{−jFShift (t )} exp{−jFDefocus (t )} (7.15)

where

FShift (t ) = 2p
2vy

l
t (7.16)

is a linear phase function due to the target velocity in the radial direction,
and

FDefocus (t ) =
4p
l

[(v − vx )2 + v 2
y + R0ay ]

t2

2R0
(7.17)

is a quadratic phase function determined by the relative velocity between
the radar and the moving target in the x -direction, the radial velocity, and
acceleration of the target. From the above phase functions we can see that
by the use of a matched filter designed to match the baseband returns from
a stationary target, the linear phase change due to the target’s radial velocity
vy in (7.16) causes the image of the moving target to be shifted in the cross-
range direction, and the quadratic phase variation in (7.17) causes the image
of the moving target to be defocused as illustrated in Figure 7.3.

Now we can examine how the Doppler frequency shift is affected by
radar and target motions. Because time-derivative of the phase function
2p [2R (t )/l ] in (7.6) is the Doppler frequency shift fD , we have
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Figure 7.3 Effect of target motion on SAR imaging.

fD =
2
l

dR (t )
dt

(7.18)

where the range R (t ) is given by (7.14). Therefore, the Doppler shift consists
of two parts:

fD = fDRadar + fDTarget

where the Doppler shift due to the radar motion is

fDRadar = −
2
l

x0v
R0

+
2
l

v2

R0
t (7.19)

and the Doppler shift due to the target motion is

fDTarget = −
2
l

x0vx + y0vy

R0
+

2
l

v 2
x + v 2

y + x0ax + y0ay −2vvx

R0
t

(7.20)

From (7.19) and (7.20), we can analyze the effects of the target motion
on SAR imaging.
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7.2 The Effect of Target Motion on SAR Imaging

For a stationary target, according to (7.19), the Doppler shift is induced
only by the radar motion, and consists of two parts: the Doppler centroid

fDRadarC
= −

2
l

x0v
R0

(7.21)

and the Doppler rate

fDRadarR
=

2
l

v2

R0
t (7.22)

Given a radar velocity v and an initial range R0, the Doppler centroid
of the stationary target is determined only by its location x0 in the cross-
range domain as shown in (7.21). After the matched filter processing, the
Doppler rate in (7.22) can be removed, and the Doppler shift becomes a
constant Doppler centroid. Thus, by taking the Fourier transform along the
cross-range domain, the image of the stationary target is clearly focused.

However, for a moving target, according to (7.20) its Doppler centroid
is determined not only by its geometric location (x0, y0), but also by its
velocity (vx , vy ). The Doppler drift of the moving target becomes

fDTargetC
= −

2
l

x0vx + y0vy

R0
(7.23)

and its Doppler rate becomes

fDTargetR
=

2
l

v2
x + v2

y + x0ax + y0ay − 2vvx

R0
t (7.24)

From (7.23) and (7.24) we know that if the target moves only in the
radial direction (i.e., vx = 0; vy ≠ 0), then the image shift in the cross-range
direction is determined only by the target’s radial velocity vy. If the target
has only motion in the x -direction (i.e., vx ≠ 0; vy = 0), then the image
shift in the cross-range direction, which is determined by a small value
(x0 /R0)vx , can be negligible. However, in both cases the image of the moving
target is defocused in the cross-range domain. A target’s movement through
range cells, called range walk, can also cause the image to be smeared in the
range domain.
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As we mentioned earlier, while stationary targets are well focused, the
image of moving targets may become defocused and shifted in the cross-
range domain. Figure 7.4 illustrates a SAR image of a moving point target
(target 2) compared with a SAR image of a stationary point target (target
1). Figure 7.4(a) is the SAR image with the two targets. The one near the
center is the stationary target and the smeared one on the left is the moving
target. Figure 7.4(b) shows the time-Doppler frequency distribution of the
two targets, where the time-scale is normalized to 1 and the frequency scale
is normalized to 0.5. The horizontal line of the time-Doppler frequency
distribution is from the stationary target, and the slope ramp of the time-

Figure 7.4 SAR image of a moving target 2 compared with SAR image of a stationary
target 1: (a) SAR image of the two targets; (b) time-Doppler distributions of
the two targets; (c) close-up of the image of the stationary target 1; and (d)
close-up image of the moving target 2—image is defocused, smeared, and
shifted from its true location.
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Doppler frequency distribution is from the moving target. Since image
focusing is based on the stationary target [Figure 7.4(c)], the moving target
is defocused, smeared, and shifted from its true location [Figure 7.4(d)],
where Figure 7.4(c, d) are close-ups of the two targets in Figure 7.4(a). In
Figure 7.4(d), we can see that the defocusing in the cross-range direction is
due to the focus processing based on the stationary target, the smearing in
the range domain is caused by the target’s range walk, and the shift in the
cross-range direction is due to the target’s radial motion.

If we can focus on the moving target by removing its Doppler rate
fDTargetR

, then the image of stationary targets becomes defocused. We can

only focus on either the stationary target or the moving target but not on
both simultaneously.

7.3 Detection and Imaging of Moving Targets

Raney first discussed the issue of SAR imaging of moving targets in [6]. He
proposed a simple frequency-domain technique for detecting moving targets
in a single-aperture channel SAR. Since the detection requires clutter suppres-
sion, clutter cancellation approaches using multiple antenna channels, such
as the space-time adaptive processing (STAP), can also be used. In this
section, we will review various approaches using single channel and multiple
channels to SAR imaging of moving targets.

7.3.1 Single-Aperture Antenna SAR

As we described earlier in Sections 7.1 and 7.2, to generate a focused image
of a moving target, accurate estimate of its phase history function, which is
determined by the Doppler centroid and the Doppler rate of the moving
target, is necessary. Any error in estimating the Doppler rate can significantly
defocus the image of the moving target. Though the error in estimating the
Doppler centroid does not affect image focusing, it can increase the ambiguity
of the target location in the cross-range. The following approaches, which
estimate the Doppler centroid and the Doppler rate for each individual
moving target, have been proposed [7].

7.3.1.1 Subaperture Focusing

In the synthetic aperture processing, since longer aperture time causes larger
motion-induced phase errors and, thus, image degradation, a method called
subaperture processing can be used to compensate a target’s motion [8]. In
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the subaperture processing, the full aperture time is broken into a sequence
of short aperture time or subaperture, and for each subaperture a low-
resolution, but well-focused image, is formed. Within each subaperture, if
the radar signal can be characterized by a linear FM, the differences of the
motion-induced Doppler shifts between adjacent subaperture images can be
determined by using correlation technique and are corrected in a piecewise
manner. Thus, by coherently combining the corrected subaperture images
a high-resolution image can be generated as illustrated in Figure 7.5.

The subaperture method is equivalent to a time gating approach. It
can produce focused images of moving targets, improve the signal-to-clutter
ratio, and suppress spurious artifacts.

7.3.1.2 Filter-Bank Approach
Based on the fact that the Doppler frequency shift of a moving target is
different from that of stationary objects, Raney proposed a filter-bank
approach for the detection and estimation of moving targets in the frequency
domain [6]. Because the clutter occupies a certain frequency bandwidth, in
order to detect a moving target the Doppler shift of the moving target must
be greater than the clutter bandwidth given in (7.11):

Figure 7.5 Subaperture processing for image focusing.
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| fDTargetC
| > |BWClutter |

From (7.11) and (7.23), we have

vy > vb3dB

where we assume R0 >> x0 and R0 ≅ y0.
A minimum detectable velocity can be expressed as (vy )min = Kvb3dB,

which depends on the velocity of the radar platform, the antenna beamwidth,
and a constant K selected by the desired false-alarm and detection rates. If
the radial velocity of a moving target is less than the minimum detectable
velocity (vy )min, the target’s Doppler frequency will be buried in the clutter
bandwidth and cannot be detected. We also notice that the minimum
detectable velocity does not depend on the range R0.

To improve signal-to-clutter ratio, the radar PRF should be much
greater than the clutter bandwidth. Thus, there will be a large frequency
region beyond the clutter bandwidth which moving targets may fall in.

To detect moving targets in the frequency domain, a simple approach
is to prefilter the data before performing the cross-range compression. A
bank of Doppler filters is usually used as the prefilter that covers the entire
Doppler frequency region.

Freeman and Currie proposed an approach for further improvement
of the Doppler filter-bank method [5]. The approach makes the moving
target signals alias onto zero Doppler frequency by using down-sampling
method. Therefore, the conventional matched filter that has a reference
function for stationary targets and is centered at the zero Doppler frequency
can still be used for the cross-range compression.

Because radar signal is transmitted at a certain PRF, Doppler ambigu-
ities (i.e., the observed Doppler frequency of the moving target can be due
to two or more frequency shifts), may occur and the clutter-band repeats at
intervals of the PRF. Thus, the radial velocity is also ambiguous, and the
blind speed intervals are raised as indicated in [5]:

vy =
l
2

( fDTargetC
+ nPRF ) (7.25)

where n is an integer. This makes it more difficult to estimate the target’s
radial velocity and to distinguish moving targets from stationary targets.

The Doppler rate fDTargetR
of a moving target is usually needed for

focusing the image of the moving target. Similar to the Doppler filter-bank,
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a Doppler-rate filter-bank may be used to compensate the unknown Doppler-
rate of the moving target before applying the reference signal to it.

To estimate the Doppler rate, an algorithm based on the Doppler
centroid was proposed in [5]. First, the cross energy between the received
baseband signal s0(t ) and a reference signal s Ref (t , h ) = exp{ j2p (h /2)t2 }
is calculated:

|e (h ) | =
1
T | E

T /2

−T /2

s0(t , fDR )sRref (t , h )dt | (7.26)

where h is the Doppler rate to be estimated. After removing the Doppler shift
in (7.15), the received baseband signal can be written as s0(t , fDR ) =

exp{ j2p ( fDR /2)t2}, where

fDR =
2

lR0
[(v − vx )2 + v2

y + R0ay ]

and, thus, we have

|e (h ) | = |K E
T /2

−T /2

exp{ jp ( fDR − h )2}dt | (7.27)

If fDR − h = 0, the |e (h ) | has a maximum cross-energy. Thus,

h̃ = max
h

|e (h ) | will be the estimated Doppler rate. However, to accurately

estimate motion parameters requires a large number of filters.

7.3.1.3 Parameter Estimation for Doppler and Doppler-Rate

The filter-bank approach matches the Doppler and the Doppler-rate sepa-
rately. If the Doppler and the Doppler-rate can be estimated simultaneously,
a better result of target detection and imaging can be expected.

A parameter estimation approach based on the maximum likelihood
method was proposed in [9]. Estimation of motion parameters based on a
sequence of single-look SAR images was described in [10, 11]. A method
called keystone formatting that uses a unique processing kernel of 1D interpo-
lation of deramped phase history was proposed for SAR imaging of moving
targets in [12].
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7.3.2 Multiple-Antenna SAR

Raney discussed the effect of motion parameters on the image of a moving
target (i.e., the problem of image smearing and mislocating [6]). For a special
case where x0 = 0 and ax = ay = 0, we have

fDRadarC
= 0 (7.28)

fDRadarR
= −

2
l

v2

R0
t (7.29)

fDTargetC
≈ −

2
l

y0vy

R0
≅ −

2
l

vy (7.30)

and

fDTargetR
= −

2
l

v2
x + v2

y − 2vvx

R0
t (7.31)

If we know the Doppler centroid and the Doppler rate exactly, then
the velocity (vx , vy ) of the moving target can be calculated from the above
equations.

However, when x0 ≠ 0, the Doppler centroid and the Doppler rate
of the moving target are determined not only by its velocity (vx , vy ), but
also by its initial location (x0, y0), which we may not know. Therefore, the
velocity of a moving target cannot be obtained, and the mislocating problem
cannot be solved.

To estimate the target’s velocities and replace mislocated moving targets
to their true locations, a multiple-antenna system, such as the interferometry,
planar apertures, and antenna array, is required. Having multiple antennas
with their independent receive channels, the so-called displaced phase center
antenna (DPCA) technique or the STAP technique can be applied to suppress
clutter.

DPCA was first proposed by F. R. Dickey and M. M. Santa in 1953
in a technical report of General Electric [13]. DPCA technique was motivated
by the two-pulse cancellation technique in MTI. Two side-looking antenna
apertures are along the flight track and normal to the radar LOS. The PRF
of the transmitted signals is adjusted such that if a pulse is transmitted at
the first aperture, then the second aperture will transmit a pulse when it
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moves to the position where the first aperture was located and transmitted
the previous pulse. With the DPCA, targets that are buried in the clutter
and cannot be detected using single channel methods may be detectable
[14, 15].

The DPCA uses only two antenna-apertures. If multiple apertures are
used, the radar receives a set of returns, each stamped by its time of arrival
as well as by its spatial location at the apertures, and the processing is referred
to as a space-time processing. The STAP proposed in the 1970s is a processing
that has adaptive spatial and temporal weights [16, 17]. Later, Klemm
investigated variations to the ideal STAP for airborne MTI [18, 19].

With multiple-antenna and STAP, SAR is able to detect moving targets
and produce a range and cross-range image of both stationary targets and
moving targets.

7.3.2.1 Ground Moving Target Indicator

Ground moving target indicator (GMTI) is designed to reject radar returns
from clutter, such as buildings and trees, and detect moving targets, such
as tanks, trucks, and aircraft, that could otherwise be obscured. The difference
of Doppler frequency shifts between moving targets and the clutter is used
to suppress the clutter and detect moving targets. With the GMTI, slow
moving targets can also be detected even if their Doppler shifts are very
small.

There are several multiple-antenna techniques to perform GMTI. The
basic idea behind using multiple antennas is to have multiple phase centers.
The radar compares the received data at the same place in space but at
different times. When the radar platform moves, the phase center of each
antenna passes through the same place at different times; this is called
displaced phase center. With displaced phase centers, the clutter will remain
the same, but moving targets will change their locations [20].

In the GMTI radar system, instead of a single antenna aperture, an
antenna array is used. The antenna array may be either along the flight track
such as the Joint Strategic Target Attack Radar System (Joint STARS)
[21, 22], which is an electronically-scanned side-look airborne radar, or a
scanned planar array mounted on the nose of an airplane such as the
AN/APY-6 radar [23, 24]. Both the Joint STARS and the AN/APY-6 are
three-port interferometric radars. Compared with the conventional mono-
pulse radar, the interferometric radar provides a low sidelobe radiation pat-
tern.

The AN/APY-6 radar is a new generation of the precision surveillance,
tracking, and targeting radar operating at X-band and designed for use in
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the littoral area. This kind of radar, including the Ku-band Gray Wolf
AN/APG-76 radar [25], provides the utility of detecting and locating both
stationary and moving targets. The antenna of the AN/APY-6 radar is a
mechanically scanned four-aperture planar array antenna. One larger aperture
is used for transmitting waveforms for SAR and GMTI as well as for receiving
radar returns for SAR. The three smaller apertures used for GMTI receive
only channels [23].

As we discussed in Section 7.2, the image of a moving target may be
shifted in the cross-range direction. By estimating the amount of shift, the
true location of the target can be recovered. Two-port interferometry is
able to estimate the target azimuth position and relocate the target to its
true location. Yadin [25] indicated that the target angular location could
be estimated by the differential phase of two interferomeric channels,

l
2pD

phase{IR , IL }, where D is the spacing between the two receiving anten-

nas, and IR and IL are the received signals of the right-channel and the left-
channel, respectively. Actually, the differential phase in the two receivers can
be derived as follows [26]:

DF ≅
2pD

l
Dcr
R0

DShift (7.32)

where Dcr is the cross-range resolution of the image and DShift is the amount
of shift in the cross-range of the image. Thus, if we can measure the differential
phase DF, the amount of the shift DShift can be estimated by

DShift ≅
l

2pD
R0
Dcr

DF (7.33)

The AN/APY-6 and APG-76 use three-port STAP clutter suppression
interferometry to simultaneously cancel clutter and determine the true cross-
range location of the detected target. The true location of the detected target
is calculated using the interferometric phase, which is the phase difference
between the phase residue of the left interferometric channel and that of
the right interferometric channel. The interferometric phase is linearly pro-
portional to the cross-range location of the target. By comparing the estimated
azimuth location to the Doppler of the target, the offset of the Doppler can
be measured. Then, the offset is used to correct the cross-range location of
the target as described in [27]. After detecting and locating the target, the
image of the target can also be focused.
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Instead of using phase estimation, another approach to the estimation
of the shift in cross-range is to apply the Fourier transform as described in
Section 7.3.2.2.

7.3.2.2 Velocity SAR

Another multiple-antenna approach uses a relatively larger number of anten-
nas along the direction of the flight track, such as the velocity SAR (VSAR)
proposed by Friedlander and Porat [28] for the purpose of detecting and
relocating moving targets. Having a single transmitting antenna and an array
of receiving antennas, VSAR can produce a full 3D range, cross-range, and
velocity complex SAR image as illustrated in Figure 7.6. The VSAR system
has the capability of estimating the velocities for the scatterers in every range
and cross-range cell. By separating scatterers in terms of their velocities, it
is able to separate moving targets from clutter.

Figure 7.6 VSAR and 3D-range, cross-range, and velocity complex SAR image.
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The VSAR processing is different from other multiple-antenna SAR.
Without having a front-end STAP for clutter suppression, the VSAR produces
complex SAR images for different velocities using the Fourier transform.
With the velocity discrimination capability, a high degree of clutter rejection
can be achieved.

With multiple phase centers in a linear antenna array, clutter can be
suppressed. However, there are only two parameters involved (i.e., the num-
ber of receiving antennas and the spacing between two adjacent antennas).
The two parameters physically limit the capability of estimating the accurate
locations of fast moving targets, and only slow moving targets can be re-
located. The multiple antenna approach that transmits signals with only a
single carrier-frequency can be generalized to transmitting signals with multi-
ple carrier-frequencies. With a multifrequency antenna array, the SAR not
only can suppress the clutter, but can also detect and relocate both the slow
and the fast moving targets as described in [26].

7.4 SAR Imaging of Moving Targets Using Time-Frequency
Transforms

A new approach to SAR imaging of moving targets is based on the time-
frequency transform. As we described in Section 7.3.1.1, the subaperture
approach is actually a time-domain gating. It does not work well when
energies of returned signals are overlapped in the time-domain. The filter-
bank approach is a frequency filtering. It may fail when energies of returned
signals are overlapped in the frequency domain. Time-frequency method
takes the advantages of the subaperture approach and the filter-bank approach
and combines the time and the frequency domains to form a new approach.

Figure 7.7(a) is a simulated SAR image with a stationary point target
located around the center of the image. If a sequence of data is taken from
received signals at range cells where the stationary target is located, the time-
frequency distribution of the data sequence is shown in Figure 7.7(b), where
the strong horizontal line corresponds to the stationary point target and
other weaker distributions correspond to the clutter located at the same
range cells. Figure 7.7(c) is a simulated SAR image with a moving point
target located around the center of the image. The time-frequency distribution
of a data sequence taken at range cells where the moving point target is
located is shown in Figure 7.7(d), where a strong slope ramp corresponds
to the moving point target and other weaker distributions correspond to the
clutter located at the same range cells.
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Figure 7.7 Time-frequency characteristics of a stationary target and a moving target: (a)
a simulated SAR image with a stationary target; (b) time-frequency distribution
of the stationary target; (c) a simulated SAR image with a moving target; and
(d) time-frequency distribution of the moving target.

Because the time-frequency distribution of a moving target is always
a slope ramp as shown in Figure 7.7(d), time-frequency transforms can be
used to distinguish moving targets from the stationary ones.

7.4.1 Estimation of Doppler Parameters Using Time-Frequency
Transforms

A target’s motion information is usually embedded in phase shifts of radar
returns. Time-frequency transform is a useful tool to estimate instantaneous
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phase shifts of scatterers on the target, and the phase-shift histories can then
be used to produce a focused image of moving targets [29].

As illustrated in Figure 7.8, the basic procedure for the estimation of
Doppler parameters is the following:

1. Calculate the time-frequency distribution of a data sequence taken
from the received signals and at the range cells where the moving
target is detected.

2. Extract ridges of the calculated time-frequency distribution.

3. Find a curve function that represents the strong ridge by using
curve-fitting.

4. Take integration of the ridge curve function to generate the corre-
sponding phase function.

5. Use the conjugate of the phase function to compensate the phase
history of the unfocused target.

6. Take the Fourier transform to form a focused image of the moving
target.

We noticed that because the focus processing is based on the Doppler
rate (i.e., the slope of the time-frequency ridge curve), it is not affected by
the mean value of the Doppler shift, which affects only the relative position
of the moving target with respect to stationary background.

The time-frequency method can compensate for the relative transla-
tional motion between the radar and the target and works well for point-
like targets (i.e., target dimension is smaller than the range resolution), or

Figure 7.8 Estimate of Doppler rate and image focusing using the time-frequency trans-
form.
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for extended targets characterized by a dominant scatterer or by a set of
scatterers which have similar reflectivity characteristics. In general, rotational
motions of extended targets cannot be compensated very well. They must be
compensated by other methods, such as the multiple PPP method described in
Chapter 6 [2].

Usually, time-frequency distribution of the radar return from a strong
scatterer, such as a corner reflector, can be used to accurately calculate the
Doppler rate of the scatterer. However, when radar return is not strong
enough, the time-frequency distribution cannot be used directly to estimate
the Doppler rate. In this case, in addition to the time-frequency transform,
Hough transform may be applied to find the slope of the time-frequency
distribution [30, 31]. A combined space-time and time-frequency processing
can also be used to improve the signal-to-disturbance ratio and estimate the
instantaneous frequency of the moving target [32].

The Hough transform has been widely used for the detection of straight
lines, parabolic geometry, ellipses, and other various curves in a 2D space
[33]. It works well in a noisy environment and other complicated back-
grounds. Duda and Hart [34] improved the Hough transform by using the
angle-radius parameters:

r = x cosu + y sinu (7.34)

to replace the slope and intercept parameters, where (x , y ) are the coordinates
of a point on the curve, r indicates the perpendicular distance of the line
from the center of the 2D space, and u is the angle between the perpendicular
to the line and the x -axis. For an N × N 2D space, the range of r is
−N√2 to +N√2 and the range of u is 0 to 2p . The Hough transform
calculates all of the r values for every angle u to determine whether the
(r, u ) pair belongs to a curve. If the 2D space contains only straight lines,
the Hough transform shows sharp peaks at the coordinates of (r, u ) where
the lines lie. Figure 7.9(a) shows two straight lines in a 2D space, and Figure
7.9(b) is the Hough transform of the structures in the 2D space where the
two peaks are the two detected straight lines.

7.4.2 Time-Frequency-Based SAR Image Formation for Detection of
Moving Targets

The same principle of time-frequency-based image formation for ISAR
[35, 36], as described in Chapter 5, can also be applied to SAR image
formation. By the use of the time-frequency-based image formation, the
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Figure 7.9 (a) Two straight lines in the time-frequency domain; and (b) the Hough transform
of the two lines in the time-frequency domain, where the two peaks correspond
to the two lines.

image of a moving target, which is smeared by using the Fourier transform,
then becomes a sequence of clear images in the temporal image frame.

Figure 7.10 (a) The smeared SAR image generated by conventional Fourier-based image
formation; and (b) three temporal image frames of the SAR image produced
by the time-frequency-based image formation showing target motion.
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As discussed in Chapter 5, the time-frequency-based image formation
does not apply any phase compensation. Instead, it takes just time sampling
to display the instantaneous Doppler shift for each scatterer center on the
target. Figure 7.10 shows three temporal image frames of a SAR image
produced by the time-frequency-based image formation. Without using con-
ventional focusing methods, each temporal image frame is automatically
focused for both the moving and the stationary scene. Just like the time-
frequency-based ISAR image formation, the information contained in the
multiple time-varying image frames can be used to detect moving targets
and to focus images of moving targets.
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8
Time-Frequency Analysis
of Micro-Doppler Phenomenon

When a radar transmits a signal to a target, the transmitted signal interacts
with the target and returns back to the radar. The change in the property
of the returned signal reflects characteristics of interest in the target. When
the transmitted signal of a coherent Doppler radar hits a moving target, the
wavelength of the signal will be changed, and the carrier frequency of the
signal will be shifted, known as the Doppler effect. The Doppler frequency
shift reflects the velocity of the moving target. When the target is moving
away from the radar, the return signal will have a longer wavelength or
negative Doppler shift; if the target is moving towards the radar, the return
signal will have a shorter wavelength or positive Doppler shift. As we men-
tioned in Chapter 1, coherent radar systems can preserve phase information
of the returned signal. From the obtained phase function of time, by taking
the time derivative of the phase, Doppler shifts induced by targets’ motions
can be found.

An important application of the coherent radar is target identification.
A target can be identified based on its signature (i.e., a distinctive characteristic
that indicates identity of a target). Signature generated from radar targets’
returns is called the radar signature of the target. Radar signature can be in
the time domain, such as a range profile of a target, or in the frequency
domain, such as the spectrum of a range profile. In this chapter, we will
introduce radar signature in a joint time-frequency domain. The time-
frequency signature is especially useful to catch time-dependent frequency
characteristics.

173
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Mechanical vibration or rotation of structures on a target may induce
frequency modulation on the returned radar signal and generates sidebands
about the Doppler frequency shift of the target’s body. The modulation due
to vibrations is called the micro-Doppler phenomenon, originally introduced
in coherent laser radar or ladar systems [1, 2]. Because ladar uses the same
principle as radar, we adopt it here for radar applications. The modulation
induced by rotations, which can be seen as a special case of vibration, can
also be interpreted as micro-Doppler. The micro-Doppler phenomenon can
be regarded as a characteristic of the interaction between the vibrating or
rotating structures and the target body. The change of the properties of
back-scattering enables us to determine some properties of the target, and
thus the target of interest can be identified based on its micro-Doppler
signature. The micro-Doppler provides an additional piece of information
for target recognition that is complementary to existing recognition methods
[3].

In this chapter, we examine the use of time-frequency analysis for the
micro-Doppler phenomenon. In Section 8.1, we analyze micro-Doppler
induced by a vibrating scattering center, illustrate time-frequency signature
of a vibrating point-scatterer using radar-measured data, and demonstrate
time-frequency signature of micro-Doppler generated by the swinging arms
of a walking man. In Section 8.2, we introduce micro-Doppler induced by
rotation structures and examine the important example of rotor blades. We
review the time-domain and the frequency-domain signatures of radar returns
from rotor blades, and introduce the time-frequency signatures of rotor
blades using both simulated and measured radar data.

8.1 Vibration-Induced Micro-Doppler

In a coherent radar, the phase of a signal returned from a target is sensitive
to the variation in range. A half-wavelength change in range can cause
360-degree phase change. It is conceivable that the vibration of a reflecting
surface may be measured with the phase change. Thus, the Doppler frequency
shift, which represents the change of phase with time, can be used to detect
vibrations of structures on a target [3]. These characteristics of vibration are
useful for detection and recognition of targets.

Figure 8.1 illustrates a radar located at the origin of the radar coordinate
system (X , Y, Z ) and a point-scatterer P vibrating about a center point Q
that is also the origin of reference coordinates (x , y , z ) translated from
(X , Y , Z ) and at a distance R0 from the radar. We assume that the center
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Figure 8.1 Geometry of the radar and a vibrating reflector.

point Q is stationary with respect to the radar. If the azimuth and elevation
angles of the point Q with respect to the radar are a and b , respectively,
the point Q is located at (R0 cosb cosa , R0 cosb sina , R0 sinb ) in the
(X , Y, Z ) coordinates. We assume that the scatterer P is at a distance Dt
from the center point Q and that the azimuth and elevation angles of the
scatterer P with respect to the center point Q are aP and bP , respectively.
Then, the scatterer P will be located at (Dt cosbP cosaP , Dt cosbP sinaP ,
Dt sinbP ) in the reference coordinates (x , y , z ). Therefore, the vector
from the radar to the scatterer P becomes

›
R t =

›
R 0 +

›
D t as shown in Figure

8.1. The range from the radar to the scatterer P can be expressed as

Rt = | ›
R t | = [(R0 cosb cosa + Dt cosbP cosaP )2

+ (R0 cosb sina + Dt cosbP sinaP )2 (8.1)

+ (R0 sinb + Dt sinbP )2]1/2

When R0 >> Dt , the range is approximately

Rt = {R 2
0 + D 2

t + 2R0Dt [cosb cosbP cos(a − aP ) + sinb sinbP ]}1/2

≈ R0 + Dt [cosb cosbP cos(a − aP ) + sinb sinbP ] (8.2)

In the case that the azimuth angle a of the center point Q and the
elevation angle bP of the scatterer P are all zero, if R0 >> Dt we have
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Rt = (R 2
0 + D 2

t + 2R0Dt cosb cosaP )1/2 ≅ R0 + Dt cosb cosaP

If the vibration rate of the scatterer in angular frequency is v v and
the amplitude of the vibration is Dv , then Dt = Dv sinvv t and the range
of the scatterer becomes

R (t ) = Rt = R0 + Dv sinvv t cosb cosaP (8.3)

Thus, the radar received signal becomes

s R (t ) = r expH jF2p f0t + 4p
R (t )

l GJ = r exp{ j [2p f0t + F(t )]}

(8.4)

where r is the reflectivity of the point-scatterer, f0 is the carrier frequency
of the transmitted signal, l is the wavelength, and F(t ) = 4pR (t )/l is the
phase function.

Substituting (8.3) into (8.4) and denoting B = (4p /l )Dv cosb cosaP ,
the received signal can be rewritten as

s R (t ) = r expH j
4p
l

R0J exp{ j2p f0t + B sinvv t } (8.5)

which can be further expressed by the Bessel function of the first kind of
order k :

Jk (B ) =
1

2p E
p

−p

exp{ j (B sinu − ku )du } (8.6)

and, thus,

s R (t ) = r expS j
4p
l

R0D ∑
∞

k=−∞
Jk (B ) exp[ j (2p f0 + kvv )t ]

= r expS j
4p
l

R0D { J0(B ) exp( j2p f0t ) (8.7)

+ J1(B ) exp[ j (2p f0 + vv )t ] − J1(B ) exp[ j (2p f0 − vv )t ]

+ J2(B ) exp[ j (2p f0 + 2vv )t ] + J2(B ) exp[ j (2p f0 − 2vv )t ]

+ J3(B ) exp[ j (2p f0 + 3vv )t ] − J3(B ) exp[ j (2p f0 − 3vv )t ]

+ . . . }
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Therefore, the micro-Doppler frequency spectrum consists of pairs of
spectral lines around the center frequency f0 and with spacing vv /(2p )
between adjacent lines.

By taking the time-derivative of the phase function in (8.4), the micro-
Doppler frequency induced by the vibration is a sinusoidal function of time
at the vibration frequency vv :

fD =
1

2p
dF

dt
=

2
l

dR (t )
dt

(8.8)

=
2
l

Dvvv [cosb cosbP cos(a − aP ) + sinb sinbP ] cosvv t

If the azimuth angle and the elevation angle bP are all zero, we have

fD =
2
l

Dvvv cosb cosaP cosvv t (8.9)

When the orientation of the vibrating scatterer is along the projection
of the radar LOS direction, or aP = 0, and the elevation angle b of the
scatterer is also 0, the Doppler frequency change reaches the maximum value
of (2/l )Dvvv .

Usually, when the vibrating modulation is small, it is difficult to detect
the vibration in the frequency domain. Thus, a method that removes the
energy of the target’s Doppler velocity and keeps only the residual Doppler
(i.e., the micro-Doppler), may help distinguish vibration spectrum from
other contributions.

8.1.1 Time-Frequency Signature of a Vibrating Scatterer

According to (8.9), when a radar is operating at X-band with a wavelength
of 3 cm, a vibration rate at 10 Hz with a displacement of 0.1 cm will induce
a maximal micro-Doppler frequency shift of 0.66 Hz as shown in Figure
8.2. The micro-Doppler shift may be detectable with a high frequency-
resolution radar. This is illustrated by analyzing a time series collected using
an X-band SF radar illuminating two point-scatterers shown in Figure 8.3(a).
The two scatterers are separated by a distance of 13.5 m. One scatterer is
stationary and the other is vibrating at 1.5 Hz with a displacement of 3 cm
[4]. Although the vibration rate is relatively low, according to (8.9) the
displacement of 3 cm can still generate larger micro-Doppler frequency shift
up to 3 Hz. Figure 8.3(b) is the magnitude of the I and Q returned signals
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Figure 8.2 Micro-Doppler generated by a vibrating reflector with a vibration rate of 10
Hz, 20 Hz, and 30 Hz, respectively.

from the two scatterers during a short time interval. By taking the Fourier
transform of the I and Q signals, the magnitude of its Fourier frequency
spectrum has one sharp peak around 0.29 and one peak spread around 0.35
to 0.39 as shown in Figure 8.3(c), where the maximum frequency scale is
normalized to 0.5. As we described in Chapter 1, for an SF radar waveform,
which sequentially transmits short rectangular pulses with a carrier frequency
stepped from one pulse to the next, the pulse compression is performed by
the Fourier transform. By taking the Fourier transform, the radar received
SF signal can be compressed and appears as a radar ‘‘range profile.’’ In other
words, the Fourier spectrum in Figure 8.3(c) is actually a ‘‘range profile,’’
where the two peaks represent the two point-scatterers located in range. The
peak spread in the spectrum indicates that there may be a modulation due
to vibrating. However, the width of the peak measured from the spectrum
does not reflect the true displacement of the vibrating scatterer because the
‘‘range profile’’ is actually the Fourier spectrum in the frequency-domain.

Figure 8.3(d) shows the time-frequency signature of the radar signal re-
turned from the two scatterers, where the vibration curve can be observed very
well. It is obtained by applying a Gabor transform described in Chapter 2.
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Figure 8.3 An experimental radar-returned signal from two point-scatterers: (a) geometry
of the radar and the two scatterers; (b) the magnitude of the radar-returned
signal; (c) the Fourier transform of the radar-returned signal; and (d) the time-
frequency transform of the returned signal. (Data provided by S. Wong, DREO
of Canada.)

From the time-frequency signature we can see that the micro-Doppler of
the vibrating scatterer is a time-varying frequency spectrum. From the addi-
tional time information, it is possible to estimate the vibration rate of the
vibrating scatterer by measuring the period of the vibration curve. However,
the maximum displacement of the vibration curve does not reflect the true
displacement in range, as mentioned earlier.

8.1.2 An Example of Micro-Doppler Signatures of Moving Targets

Here we demonstrate an example of micro-Doppler signatures of moving
targets. The moving target in this example is a walking man with swinging
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arms. The radar is mounted on the rooftop of a building, and a man is
walking towards the building at a speed of about 1.8 m/sec as illustrated in
Figure 8.4(a). The radar data has 64 range cells and 1,000 pulses and was
collected at a PRF of 800 Hz. Figure 8.4(b) shows radar-range and cross-
range images of the walking man generated by 64 range-cells and 128 pulses,
where the hot spot in the image indicates the body of the walking man. We
also notice that there are smeared lines running across the cross-range direc-
tion around the body of the walking man at the range cell 12. If we apply
a Gabor transform to the time history data at the range cell 12, the body
Doppler shift and the micro-Doppler signature of the swinging arms can
be clearly detected in the time-frequency domain [4]. As shown in Figure
8.4(c), the Doppler shift of one arm is higher and the other is lower than
the body Doppler frequency shift. Figure 8.4(d, e) shows the result with

Figure 8.4 Time-frequency signatures of a walking man with swinging arms. (Data pro-
vided by H. Holt, Norden Systems, Northrop Grumman.)
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the same data but in a different short-time interval and at the range cell 20.
Superposition of the time-frequency signatures over several range cells, which
correspond to different walking steps, gives a full time-frequency signature
of the walking man as shown in Figure 8.4(f ). We can see that the body’s
Doppler shift is almost constant but the arm’s micro-Doppler shift becomes
time-varying and has a sinusoidal-like curve. Again, from the additional time
information, the swinging rate of the arm can be estimated and is about
1.2 cycle/sec in this example.

8.2 Rotation-Induced Micro-Doppler

Modulation induced by rotation structure (such as rotor blades of a helicopter,
propellers of an aircraft, or rotating antennas on a ship or an aircraft) can
be regarded as a unique signature of the target. The micro-Doppler signature
becomes an important feature for identifying the target of interest. Here,
we examine micro-Doppler induced by rotor blades of a helicopter, show
the time-domain and the frequency-domain signatures of the micro-Doppler,
and introduce the time-frequency signature of the micro-Doppler induced
by rotor blades.

8.2.1 Rotor Blade Motion

In a helicopter, the main rotor blades, the tail rotor blades, and the hub
have unique signatures suitable for target identification. Generally, radar
returns from a helicopter are back-scattered from the fuselage, the rotor
blades, the tail blades, the hub, and other structures on the helicopter. The
motion of the rotor blades depends on the interdependent coupling between
the aerodynamics and the rotor dynamics [5]. Each blade is a rotating aerofoil
having bending, flexing, and twisting. The radar cross section of a segment
in the blade depends upon its distance from the center of rotation, its angular
position, and the aspect angle of the rotor [6, 7].

Because we are especially interested in electromagnetic back-scattering
from the main rotating blades of a helicopter, for simplicity, the rotor blade
is modeled as a rigid, homogeneous, and linear rod rotating about a fixed
axis with a constant rotation rate. No flapping, lagging, and feathering are
considered for the calculation of electromagnetic back-scattering.

8.2.2 Radar Returns from Rotor Blades

As illustrated in Figure 8.5, the radar is located at the origin of the radar
coordinates (X , Y, Z ); reference coordinates (x , y , z ) are translated from
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Figure 8.5 Geometry of the radar and the helicopter.

the radar coordinates and their origin is at the geometric center of the
helicopter. The rotor blades are on the plane (x , y , z = z0) and rotate about
the z -axis with a rotation rate of V. The azimuth and the elevation angles
of the helicopter with respect to the radar are a and b , respectively.

Let us begin with a simple case where a = b = 0 and z0 = 0 as shown
in Figure 8.6. Assume a scatterer P at (x0, y0) on a rotor blade rotates about
a center point Q with a rotation rate of V. The distance from the scatterer
to the center point is l, and the distance between the radar and the center
point is R0, which may be a function of time if the target is moving. Assume
that at t = 0 the initial rotation angle of the scatterer in the blade is u0, and
at t the rotation angle becomes u t = u0 + Vt and the scatterer is rotated to

Figure 8.6 Geometry of the radar and a rotor blade when a = b = 0.



183Time-Frequency Analysis of Micro-Doppler Phenomenon

(x t , y t ). Because we assume both the radar and the rotor are on the same
plane, at time t the range from the radar to the scatterer can be derived as

RP (t ) = [R 2
0 + l 2 + 2lR0 sin(u0 + Vt )]1/2 (8.10)

≅ R0 + VR t + l sinu0 cosVt + l cosu0 sinVt

where VR is the radial velocity of the helicopter and (l /R0)2 → 0 for far
field. Thus, the radar received signal becomes

s R (t ) = expH jF2p f0t +
4p
l

RP (t )GJ = exp{ j [2p f0t + FP (t )]}

(8.11)

where FP (t ) = 4pRP (t )/l is the phase function.
If the elevation angle b and the height of rotor blades z0 are not zero,

then the phase function should be modified as

FP (t ) =
4p
l

[R0 + VR t + cosb (l sinu0 cosVt + l cosu0 sinVt ) + z0 sinb ]

(8.12)

The returned signal from the scatterer P in the rotor blade becomes

s R (t ) = expH j
4p
l

[R0 + VR t + z0 sinb ]J (8.13)

? expH j2p f0t +
4p
l

l cosb sin(Vt + u0)J
Let u0 = 0, denote B = (4p /l )l cosb , and reduce (8.13) to (8.5).

Again, it can be expressed by the Bessel function of the first kind. Similar
to (8.7), the micro-Doppler of a scatterer on the blade consists of pairs of
spectral lines around the center frequency f0 and with spacing V/(2p )
between adjacent lines.

After compensating the motion and removing the constant phase term
in (8.13), the baseband signal returned from the scatterer P becomes

s B (t ) = expH j
4p
l

l cosb sin(Vt + u0)J (8.14)
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By integrating (8.14) over the length of the blade L , the total baseband
signal becomes the following [6]:

s L (t ) = E
L

0

expH j
4p
l

l cosb sin(Vt + u0)Jdl (8.15)

= L expH j
4p
l

L
2

cosb sin(Vt + u0)J sincH4p
l

L
2

cosb sin(Vt + u0)J
For a rotor with N blades, there will be N different initial rotation

angles

u k = u0 + k2p /N, (k = 0, 1, 2, . . . N − 1) (8.16)

and the total received signal becomes

s S(t ) = ∑
N−1

k=0
s Lk (t ) (8.17)

= ∑
N−1

k=0
L sincH4p

l
L
2

cosb sin(Vt + u0 + k2p /N )J exp{ jFk (t )}

where

Fk (t ) =
4p
l

L
2

cosb sin(Vt + u0 + k2p /N ) (k = 0, 1, 2, . . . N − 1)

(8.18)

8.2.3 Time-Domain Signatures of Rotation-Induced Modulations

Rotor blades in a helicopter are in rotational motion that will impart a
periodic modulation on radar returned signals as shown in (8.17). The
rotation-induced Doppler shifts relative to the Doppler shift of the fuselage
(or body) occupy unique locations in the frequency domain. The modulation
in the frequency domain as well as the time-domain signal have been used
as radar signatures for target identification [8, 9].

The time-domain signature of rotor blades is defined by the magnitude
in (8.17)
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| s S(t ) | = | ∑
N−1

k=0
L sincH4p

l
L
2

cosb sin(Vt + u0 + k2p /N )J exp{ jFk (t )} |
(8.19)

where Fk (t ) is defined by (8.18).
Assume a radar is operating at S-band with a wavelength of 0.1m,

and a helicopter has 2 rotor blades at a constant rotation rate of 5 revolu-
tions/sec (rev/sec). If the distance of the blade roots from the rotor center
is 0.3m, the distance of the blade tips from the rotor center is 6.7m, and
the elevation angle of the rotor b = 0, the time-domain signature of the
rotor blades in (8.19) is shown in Figure 8.7(a). The frequency spectrum
of the same signal is shown in 8.7(b), which we will discuss in Section 8.2.4.
The rotor blade’s return has a short flash when the blade has specular
reflection at the advancing as well as at the receding point of rotation [9].
The interval between flashes is related to the rotation rate of the rotor. The
duration of the flash is determined by the length of the blade L , the wave-
length l , and the rotation rate V as described by the sinc function in (8.19).

Figure 8.7 (a) The magnitude of the radar-returned signal from two rotor blades; and
(b) the frequency spectrum of the radar-returned signal.
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For longer blade length and at a shorter wavelength, the duration of the
flash is shorter. Because the number of blades is 2 and the rotation rate is
5 rev/sec, there are 5 flashes in 0.5 sec, and the interval between flashes is
0.1 sec as shown in Figure 8.7(a).

Figure 8.8(a) shows a simple Computer-Aided Design (CAD) model
of a helicopter with four rotor blades. An electromagnetic prediction code
Xpatch was used to simulate radar returns from the helicopter model
[10, 11]. The body of the helicopter is made by two conducting-boxes with
different sizes. The length of the rotor blade is 3m. In the simulation, the
radar scattering is observed at 128 frequency steps from 1.75 GHz to
2.25 GHz and 128 target aspect looks from 158 to 170 degrees. The elevation
angle of the helicopter is 20 degrees. The blade position is articulated between
0 and 360 degrees during the 128 angular looks. The rotational motion of
the helicopter’s body is 12 rev/m or 0.2 rev/sec. The rotation rate of the
rotor blade is 360 rev/m or 6 rev/sec [12]. Figure 8.8(b) is the standard
radar image of the helicopter in the range versus cross-range domain by
taking the 2D Fourier transform of the Xpatch -generated data. We can see
that the body of the helicopter has a small extent around the center of the
cross-range while the fast rotating rotor blades exhibit strong smeared lines
running across the cross-range and overlapping with the body of the helicop-
ter. The time-domain signature of the simulated helicopter is shown in
Figure 8.9(a), where the radar signal includes returns from both the rotor
blades and the helicopter body. The frequency spectrum of the same simulated
helicopter is shown in 8.9(b), which will be discussed in Section 8.2.4.

Figure 8.8 (a) A simplified CAD model of a helicopter with four rotor blades; and (b) the
radar range and cross-range image of the helicopter.
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Figure 8.9 (a) The magnitude of the radar-returned signal from the simplified CAD model
of a helicopter; and (b) the frequency spectrum of the radar-returned signal.

Figure 8.10(a) shows a similar time-domain signature of measured
helicopter data. The overlapped range profiles illustrated in Figure 8.11 show
separated flash peaks of rotor blades. It also shows overlapped peaks of returns
from the body of the helicopter. Unlike the flash peaks, these overlapped
body peaks are located at a fixed range cell. The corresponding frequency
spectrum of the measured helicopter data is shown in 8.10 (b), which will
be discussed in Section 8.2.4.

As was defined in Chapter 1, for each transmitted pulse, the time-
domain signature is actually a range profile. From only one range profile,
it is difficult to observe the rotation feature of rotor blades. However, owing
to the frequency modulation induced by rotational motions, the rotation
feature may be observed from the frequency-domain signature in its Doppler
spectrum. To better observe the rotation feature of rotor blades, we use a
sequence of range profiles by transmitting a sequence of pulses and rearranging
them into a 2D (the range versus the dwell time) array matrix. At each range
cell, the time history series across the range profiles provides a better way
to observe the rotation behavior during a longer time period. This will be
further discussed in Section 8.2.5.
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Figure 8.10 (a) The magnitude of the radar-returned signal from a helicopter; and (b) the
frequency spectrum of the radar-returned signal.

8.2.4 Frequency-Domain Signatures

Because the time-derivative of the phase is the frequency, by taking the time-

derivative of the phase function
4p
l

L
2

cosb sin(Vt + u0) in (8.15), the

Doppler frequency shift induced by a rotor blade becomes

fD (t ) =
L
l

V cosb (−sinu0 sinVt + cosu0 cosVt ) (8.20)

If the initial rotation angle u 0 = 0, then we have f D (t ) =
L
l

V cosb cosVt . We can clearly see that the Doppler frequency is modulated

by the rotation rate V through cosVt . The frequency spectrum of the
received signal can be directly obtained by taking the Fourier transform of
(8.15).

For a rotor with N blades, the frequency spectrum of the total received
baseband signal in (8.17) can be expressed as follows [6]:
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Figure 8.11 Overlapped individual range profiles of the measured radar data of a
helicopter.

S S( f ) = ∑
M

m=−M
Cmd ( f − mNV) (8.21)

where Cm is a scale factor determined by Bessel functions of the first kind
with parameters of l , L , b , N, and m , and M is the index number of the
most significant sideband. Because we have compensated the translational
motion of the rotor blades and removed the carrier frequency and the constant
phase term, the residual frequency spectrum reflects only the micro-Doppler
shifts induced by rotor blades relative to the zero frequency.

Figure 8.7(b) shows the frequency spectrum of radar returns from only
the rotor blades and based on the baseband time-domain signal derived in
(8.17). The Doppler modulation about center (zero) frequency can be seen.
The lower cutoff frequency is determined by the distance between the rotor
center and the blade roots. For the Xpatch -simulated radar data described
in Section 8.2.3, the radar return is not only from rotor blades, but also
from the body of the helicopter. The frequency spectrum of the data is
shown in Figure 8.9(b), where the Doppler modulation about the center
(zero) frequency can also be seen. For the measured radar data described in
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Section 8.2.3, radar returns also include returns from structures other than
rotor blades of the helicopter. The frequency signature is shown in Figure
8.10(b), where the Doppler frequency modulation about the center (zero)
frequency can also be seen. However, due to noise spectrum, the magnitude
of the spectrum around the center frequency is higher.

Frequency-domain signatures provide information about frequency
modulations by either rotating blades or other rotating or vibrating structures.
Because of the lack of time information, it is not easy to tell the rotation
rate from the frequency spectrum alone. Therefore, the time-frequency signa-
ture that provides time-dependent frequency information is more useful as
an additional information for target identification complementary to existing
time-domain or frequency-domain methods.

8.2.5 Time-Frequency Signatures

Figure 8.12 illustrates a stack of radar range profiles of a helicopter. In each
range profile, we assume that there are returns from four rotor blades and
one return from the body of the helicopter. Because of the blades’ rotation,
the amplitudes of the blades’ returns change from one profile to the next
as seen in Figure 8.12. Thus, four blades have flashes at different times.

Figure 8.12 A stack of radar range profiles returned from a helicopter.
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However, the amplitude of the return from the body is relatively stable.
When we apply the Fourier transform to form an image of the helicopter,
the image of the body is relatively clear but the image of the rotor blades
is smeared along the cross-range domain.

Although range profiles can provide features, such as the location and
the reflectivity of a scatterer, a better way to extract useful features of rotor
blades may not be from the range profile. Instead, the data across range
profiles at a range cell where the smearing in the cross-range occurs may be
used. To extract features of rotor blades, we observe the time-frequency
behavior of rotor blades by taking a time-frequency transform of the data
across range profiles.

Figure 8.13 shows the time-frequency signature of the returned signal
from the Xpatch -simulated helicopter shown in Figure 8.8, where the
characteristics of the rotating blades can be seen more clearly in the joint
time-frequency domain. The strong time-frequency distribution along the
horizontal line about the center frequency is due to returns from the helicop-
ter’s body. The strong time-frequency distribution along slope-lines about

Figure 8.13 Time-frequency signature of the simulated radar-returned signal from the
simplified CAD model of a helicopter.
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the vertical direction is due to returns from the rotating blades. Because
time information is now available, the rotation rate of the blades can be
measured from their time-frequency signatures [13].
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9
Trends in Time-Frequency Transforms
for Radar Applications

The Fourier transform has been widely used in radar signal and image
processing. When radar signals exhibit time-varying behavior, a transform
that represents the intensity or energy distribution in the joint time and
frequency domain is most desirable. In Chapters 3 through 8, we have shown
that the time-frequency transform is indeed a useful tool for the detection
of weak signals buried in noise, for analyzing radar back scattering, for
focusing the image of maneuvering targets, for motion compensation, and
for micro-Doppler analysis. We discuss here some current trends in time-
frequency transforms for radar applications.

9.1 Applications of Adaptive Time-Frequency Transforms

Parametric time-frequency transforms, also called model-based or adaptive
transforms, make use of time-frequency basis functions and adaptively select
the parameters of the basis functions to decompose a signal into the joint
time-frequency domain [1–5].

In Sections 2.1.3 and 6.2.1, we have discussed some radar applications
of adaptive time-frequency transforms. Gabor function with three parameters
(time center, frequency center, and time-frequency extent) and linear chirp
function were used as basis functions. Their parameters were then selected
adaptively by searching for the maximum projection of the signal onto all
possible bases in a dictionary of basis functions.

193
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When the basis set is well matched to the analyzed signal, the perfor-
mance of adaptive time-frequency algorithms can be very good. Compared
to the nonparametric methods, however, adaptive algorithms are usually
computationally quite expensive, especially if the number of bases in the
dictionary is large. A fast scheme is proposed in [5] for simple chirplet
functions to overcome this problem. Fast algorithms for more general basis
functions are still very much needed.

9.2 Back-Scattering Feature Extraction

Chapter 4 showed that time-frequency analysis is a very useful tool in
unveiling the underlying scattering phenomenology in radar back-scattering
data. This led to a better understanding of the various scattering mechanisms
in complex targets. Without time-frequency analysis, these mechanisms were
not easy to interpret from measured or computed data, nor could they be
easily studied from analytical solutions of Maxwell’s equations due to target
complexity. This line of research should be continued to help build up a
more comprehensive knowledge base for complex shapes and exotic materials.
For target identification applications, work to incorporate the extracted time-
frequency features to improve the performance of existing classifiers is also
worthwhile pursuing [6, 7]. Finally, a more thorough understanding of the
scattering phenomenology from the electromagnetics point of view will allow
us to devise better basis functions in model-based time-frequency algorithms.
This can lead to physics-based signal processing algorithms that significantly
out-perform existing time-frequency tools.

Another potential application area where time-frequency analysis might
play a useful role is the suppression of clutter and propagation effects. For
instance, ocean surface often gives rise to large clutter that makes the detection
and classification of small floating targets a very difficult task [8]. In ground
penetrating radar for detecting buried objects, the dispersive effects due to
wave propagation through soil can lead to significant image distortion [9].
In foliage penetration (FOPEN) applications, the two-way propagation
through tree canopies will be an important factor on how well hidden targets
can be detected [10]. It would be fruitful to exploit the difference in target,
clutter, and propagation channel characteristics in the context of time-
frequency space to achieve clutter suppression, propagation effect removal,
and target feature enhancement. Some work along this line on SAR clutter
suppression using wavelets has been reported in [11].
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9.3 Image Formation

As shown in Chapter 5, time-frequency-based image formation has been
successfully applied to radar image formation, especially in the case of blurred
Fourier images. The time-frequency distribution series and WVD have been
investigated for time-frequency-based image formation [12–14]. Continual
search for fast time-frequency transforms with high time-frequency resolution
and low cross-term interference is still needed. Analysis of the image resolution
provided by different time-frequency transforms is another issue to be further
studied.

Compared to the Fourier transform for image formation, the time-
frequency-based image formation shows its capability for improving the
signal-to-noise ratio. How much SNR improvement can be obtained with
time-frequency transforms is still an open issue. A quantitative analysis of
the SNR improvement for radar image formation should be further studied.

9.4 Motion Compensation

In Chapter 6, the use of time-frequency analysis for achieving ISAR motion
compensation has been discussed. An adaptive time-frequency procedure
was used to extract the phases of the prominent point-scatterers on the target.
The extracted phase information was then used in conjunction with the PPP
model to remove the higher-order motion errors in the radar data. In this
procedure, the phase of the resulting focused image is preserved and the
Doppler resolution offered by the full coherent processing interval can be
achieved.

As in all model-based time-frequency approaches, the model must be
well matched to the actual motion physics in order to achieve good perfor-
mance. When more complex motion dynamics are involved, more sophisti-
cated models should be investigated. For example, for air targets undergoing
fast maneuvers or ships on rough seas, the rotational motion of the target
may not be confined to a 2D plane. Section 6.4 discussed how the existence
of such chaotic motions could be detected using time-frequency processing.
However, the question of how motion compensation can be achieved under
such situations remains a very challenging research topic [15], and much
more work is warranted.

Another important issue is the computational speed of the time-
frequency-based procedure for motion compensation. One drawback of the
adaptive time-frequency method is the computational burden associated with
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the exhaustive search procedure for the motion parameters. This problem
becomes especially severe when higher-order motions are involved. Recently,
genetic algorithms [16] have been attempted as a way to reduce the computa-
tional complexity and speed up the search procedure.

9.5 Moving Target Detection

In Chapter 7, we discussed SAR imaging of moving targets and how to
detect moving targets in clutter. Especially in a high clutter environment,
it is difficult to detect moving targets by using conventional methods. In
[17], the WVD was used to detect a moving target and estimate motion
parameters. Combined with the Hough transform as we described in Section
7.4.1, the WVD works well for single target detection, but not for multiple
targets owing to the cross-term interference. A combined Wigner-Hough
transform extended to the analysis of multicomponent LFM signals was
suggested in [18–20].

Another approach to detecting multiple LFM signals in clutter is the
fractional Fourier transform (FRFT) [21]. For any real angle a , the FRFT
of a signal s (t ) is defined by

FRFTa (u ) = (9.1)

5S1 − j cota
2p D1/2
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u 2
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∞
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s (t )e
j
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s (u ) (a = n2p )
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where n is an integer.
The FRFT depends on an angle parameter a and can be interpreted

as a rotation of the time-frequency plane by the angle a . In [22] relationships
between the FRFT and the WVD and the STFT are derived in a simple
and natural form. For the WVD, the relationship is

WVD (t , v ) = 2 exp{2 jv ′t ′ }E
∞

−∞

FRFTa (z )FRFTa*(2v ′ − z ) exp{−2jt ′z }dz

(9.2)
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where v ′ = t cosa + v sina and t ′ = t sina + v cosa . This means the WVD
of FRFT a is the WVD of the signal s (t ) rotated by an angle −a . For the
STFT, the relationship is

STFT M(t , v ) =
1

(2p )1/2 expHv ′t ′
2 JE

∞

−∞

FRFTa (z )Wa*(v ′ − z ) exp{−jt ′z }dz

(9.3)

where Wa (?) is the frequency window function with arguments (v ′, t ′ ) and
STFT M is a modified STFT defined by

STFT M(t , v ) =
1

(2p )1/2 expHv t
2 JE

∞

−∞

s (t ′ )w*(t − t ′ ) exp{−jv t ′ }dt ′

(9.4)

where w (?) is the time window function. Again, the modified STFT of
FRFTa is a rotated version of the modified STFT of the signal s (t ).

Therefore, the time-frequency transform of the FRFT of a signal is
the rotated time-frequency transform of the signal by an angle a . When
a = p /2 the FRFT is equivalent to the Fourier transform, and when
a = 0 it is an identity operator (i.e., the FRFT of a signal is the signal itself ).
Since the FRFT is just a generalized Fourier transform [23], it is a linear
transform and has no cross-term interference. The FRFT has been applied
to many areas including signal processing [24–26] and analysis of multiple
LFM signals [27].

For a given LFM (or linear chirp signal) with an unknown chirp rate
as shown in the joint time-frequency domain in Figure 9.1, the projection
of the signal onto the Fourier frequency f -domain is its frequency spectrum,
and its energy is spread in frequency. However, if we select a proper rotation
angle a, the (t , f ) coordinates rotate to a new set of (t ′, v ′ ) coordinates
called the fractional Fourier domain, where the projection of the LFM signal
onto the fractional Fourier u -domain is the fractional Fourier spectrum. The
fractional Fourier spectrum of the signal is highly concentrated in fractional
frequency (v ′-axis), and the centroid of the LFM signal can also be deter-
mined by the position of its energy peak in fractional Fourier frequency.
Thus, with the FRFT and by searching rotation angles, LFM signals generated
by moving targets can be detected.
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Figure 9.1 Illustration of the Fourier transform and the FRFT of an LFM signal.

A robust FRFT called the generalized-marginal time-frequency dis-
tribution, which is a bilinear transform with an angle parameter a in its
kernel function, was proposed in [28] and has potential applications for the
detection of multiple LFM signals in a strong clutter environment.

9.6 Micro-Doppler Analysis

Micro-Doppler phenomenon has been observed in the frequency domain
for those targets that have vibrating or rotating structures. As discussed in
Chapter 8, the joint time-frequency representation of the micro-Doppler
can provide time information such as the vibration rate or the rotation rate.
Unfortunately, so far there are not many publications on the subject of time-
frequency analysis of micro-Doppler phenomena.

In Chapter 8, we demonstrated examples of the micro-Doppler phe-
nomenon and its signature in the joint time-frequency domain. Some recent
studies on extraction of micro-Doppler features can be found in [29–31].

In [29] an X-band radar is used to capture the natural resonance
frequency of large moving vehicles such as a tractor trailer. As described in
[29], the life of a highway bridge can be doubled if the bridge structure is
tuned to make sure the entry of large vehicles onto the bridge deck does
not excite destructive natural resonance. The resonance frequency (about
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1 to 3 Hz) as a micro-Doppler frequency is imposed on the Doppler frequency
shift of the moving tractor trailer.

In [30], a millimeter wave radar operating at 92 GHz is used to analyze
micro-Doppler signatures of the jet engine modulation (JEM) lines in an
Mi-24 Hind-D helicopter. The research shows that the frequencies of these
JEM lines are proportional to the turbine rotation rate and the number of
turbine blades. It also shows that only the primary set of turbine blades has
contribution to the micro-Doppler signature.

Marple recently proposed a modified time-frequency analysis that pro-
vides high resolution without cross-term interference to observe micro-Dopp-
ler details induced by extremely weak signal components [31]. The new
approach has been applied to returned signals from a two-engine Eurocopter
Deutschland BO-105 helicopter illuminated by an X-band radar. With the
modified time-frequency analysis, Doppler components due to the forward
motion of the fuselage, the micro-Doppler components due to main rotor
and tail rotor rotations, and multipath components between the fuselage
and rotors can be extracted with at least 70 dB of dynamic range between
the strongest and the weakest signal components.

Other new methods for extracting weak micro-Doppler features in the
time-frequency domain are still much needed.
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1D one-dimensional
2D two-dimensional
3D three-dimensional
ADS adaptive spectrogram
AJTF adaptive joint time-frequency
CAD computer-aided design
CFAR constant false alarm rate
CPI coherent processing interval
CSD cone-shaped distribution
CWD Choi-Williams distribution
CWT continuous wavelet transform
DPCA displaced phase center antenna
FFT fast Fourier transform
FOPEN foliage penetration
FRFT fractional Fourier transform
GMTI ground moving target indicator
GPS global positioning system
GTD geometrical theory of diffraction
I and Q in-phase and quadrature-phase
IF intermediate frequency
INS inertial navigation system
ISAR inverse synthetic aperture radar
JEM jet engine modulation
Joint STARS Joint Strategic Target Attack Radar System
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LFM linear frequency modulated
LOS line of sight
MTI moving target indication
PGA phase gradient autofocus
PPP prominent point processing
PRF pulse repetition frequency
PRI pulse repetition interval
RF radio frequency
SAR synthetic aperture radar
SF stepped frequency
SNR signal-to-noise ratio
STAP space-time adaptive processing
STFT short-time Fourier transform
TFDS time-frequency distribution series
VSAR velocity synthetic aperture radar
WVD Wigner-Ville distribution
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kernel function, 40
adaptive Gaussian, 35–36, 84

of test signal, 41
of dispersive scattering features, 85–89
in joint time-frequency domain, 61–63Detection
SNR for, 54–56

CFAR, 47, 57–61
with GMTI, 162 False-alarm rate, 59
of moving targets, 157–65, 196–98 Fast Fourier transform (FFT), 78, 129
multiple LFM signal, 196 Filter-bank approach, 158–60

Foliage penetration applications, 194signal, 57–58
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Fourier-based image formation, 21, 102–4 Image blurring, 128
Image formation, 195Fourier transform, 25, 101, 178

Fourier-based, 102–4, 195of 1D, 133
time-frequency-based, 104–6, 195of autocorrelation function, 36–37

Inertial navigation system (INS), 135fast (FFT), 78
Inverse Fourier transform, 77fractional (FRFT), 196–98
Inverse synthetic aperture radar (ISAR),inverse, 77

21, 85–89of rectangular pulse, 10
adaptive joint time-frequencyshort-time (STFT), 25–26, 28–31

algorithm, 89of time-shifted rectangular pulse,
algorithm, 85, 8910–11
defined, 85of time signal, 26
enhanced images, 87, 89Fractional Fourier transform (FRFT),
images, 85, 86, 87, 88196–98
joint time-frequency processing, 86angular parameter and, 196
See also ISAR imagingdefined, 196

ISAR imagingof LFM signal, 198
after AJTF motion compensation, 139robust, 198
challenges, 123time-frequency transform of, 197
collection, 124Frequency-domain filtering, 50
formation from measured data, 136,

Frequency-domain signatures, 173,
137

188–90
generation, 93

illustrated, 188
motion compensation in, 123–44

information, 190 real-world scenarios, 123
of simulated Boeing-727, 133, 135

Gabor spectrogram, 43
stationary sensor in, 123

Gabor transform, 30, 47, 61, 180 See also inverse synthetic aperture radar
Gaussian window function, 30, 31 (ISAR)
Generalized-marginal time-frequency

distribution, 198 Joint STARS, 162
Geometrical theory of diffraction (GTD) Joint time-frequency domain, 57–63

for canonical conducting structures, 8 CFAR detection in, 57–61
defined, 8 signal extraction in, 61–63
electromagnetic wave scattering, 67 SNR in, 56–57
as ‘‘high-frequency’’ approximation, 68 Joint time-frequency energy distribution,
scattering amplitudes and, 68 102
theory, 8 Joint time-frequency images

Global positioning system (GPS), 135 from coated plate, 73
Goubau mode, 80 from conductor-backed periodic
Ground moving target indicator (GMTI), grating, 74

162–64 from dielectric coated wire, 80
as distinct features, 71defined, 162
from slotted waveguide structure, 76detection with, 162
via CWT, 79

Hanning window, 31 via STFT, 79, 80
via TFDS, 80Hough transform, 168, 169
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Kaiser-Bessel window, 78 rotational, 130
standard, 102–3

Linear frequency modulated (LFM)
time-frequency-based, 126–35

signals, 9
Motion compensation algorithms, 124–26

ambiguity function, 16
2D, 140

defined, 9
AJTF, 132, 137, 143

frequency spectrum, 9, 10
goal of, 128

FRFT of, 198
Motion error elimination, 129–31

with Gaussian envelope, 9
Moving target indication (MTI), 147

multiple, detecting, 196
Moving targets, 3, 94–102

waveform, 10
3D, 135–44

Linear phase function, 153
compensation, 102–4

Linear time-frequency transforms, 26–36
detection and imaging of, 157–65,

adaptive representation, 33–36
196–98

CWT, 32–33
Doppler rate of, 159

STFT, 28–31
Doppler shift of, 155

See also Time-frequency transforms
micro-Doppler signatures of, 179–81
multiple, 113–20Maclurin series expansion, 152

Maneuvering targets, 107–13 radar imaging of, 94–102
radar returns of, 148–54defined, 107

dynamics of, 107–8 rotational motion, 95
SAR imaging of, 147–70imaging with time-frequency-based

image formation, 108–13 time-frequency characteristics, 166
See also TargetsMatched filter, 17–19

applied to base-band signal, 151 Multiple-antenna SAR, 161–65
DPCA, 161–62defined, 17

output of, 19–20 GMTI, 162–64
velocity SAR, 164–65properties, 18–19

response of, 19 See also Synthetic aperture radar (SAR)
Multiple targets, 113–20Mechanical vibration, 174

Micro-Doppler phenomenon, 173–92 conventional time-frequency approach
to, 118analysis, 198–99

defined, 174 distinguishing, 115
Doppler difference between, 114, 115frequency spectrum, 177

rotation-induced, 181–92 geometry of, 116
identifying, 120time-frequency analysis of, 174

vibration-induced, 174–81 radar imaging of, 113–20
resolution analysis, 113–17MIG-25 simulation, 109, 110

Millimeter wave radar, 199 rotational motion, 117
at same range, 117Motion compensation, 102–4, 195–96

blind, 134 separated, 115
time-frequency-based image formationDoppler tracking in, 103

examples of simulated/measured data, for, 119–20
time-frequency-based phase131–35

in ISAR imaging, 123–44 compensation for, 117–19
See also Targetspurpose of, 102

range tracking in, 103 MUSIC, 81
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Parameter estimation, 160 two-dimensional image, 4
X-band, 198–99Phase

alignment, 125 Radar imaging
of maneuvering targets, 107–13of baseband signal, 96

compensation, 118 of multiple targets, 113–20
system based on time-frequency imagedetected nonlinearity, 142

eliminating, 128–29 formation, 105
See also ISAR imaging; SAR imagingestimating, 130

extracting, 130, 142 Radar returns, 147–54
analysis, 152–54functions, 153

history function, 118 from CAD model, 187
clutter bandwidth, 150–52interferometric, 163

of output base-band signal, 151 phase shifts, 166–67
range curvature, 149–50returned signal, 114

shifts, 166–67 from rotor blades, 181–84
Radar signaturestime-derivative of, 96

Phase gradient autofocus (PGA), 126 defined, 173
frequency-domain, 173, 188–90Point-scatterer model, 66–67

defined, 66 micro-Doppler, 179–81
superposition of, 181electromagnetic scattering theory and,

67 time-domain, 173, 184–88
time-frequency, 178, 180, 181,illustrated, 66

Polar reformatting, 104, 109 190–92
Radial velocity, 155Prominent point processing (PPP)

model, 124 Range curvature, 149–50
defined, 150multiple algorithm, 126, 129

Prony’s method, 81–82 illustrated, 150
Range profiles, 4, 178applying, 81, 82

defined, 81 aligned, 99
defined, 21, 65See also Windowed superresolution

algorithm dwell time vs., 136
overlapped, 187, 189Pulse compression, 19–20

Pulse repetition frequency (PRF), 2 pulse number vs., 125
in simple targets, 21Pulse repetition interval (PRI), 9
STFT of, 70

Quadratic phase coefficient, 129
time-domain signatures as, 187
time-frequency analysis of, 65–89Radar

ambiguity function, 13–17 time-frequency representation of,
70–77AN/APY-6, 162–63

coordinates, 94–95 Range resolution, 21–22
Range tracking, 99defined, 1

GMTI, 162–64 applying, 99
defined, 98line of sight (LOS), 2–3, 7

millimeter wave, 198 in motion compensation, 103
Range walk, 150, 155operational scenario, 2

range profile, 4, 65–89 Rayleigh distribution, 58, 59
Ray optical descriptions, 67synthetic aperture (SAR), 20–22
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Ray propagation, 69 system, 100
target motion effect on, 154, 155–57Reflectivity density function, 98

Resolution with time-frequency transforms,
165–70cross-range, 4–5

defined, 4 See also Synthetic aperture radar (SAR)
Scaling factor, 22Doppler, 22

range, 21–22 Scattering
amplitudes, 8, 68–69TFDS, 111

WVD, 79, 110 dispersive features extraction, 85–89
electromagnetic wave, 67Rotational Doppler frequency shift, 97

Rotational motion, 97 high-resolution time-frequency
techniques and, 77–843D, 139, 143

compensation, 130 Short-time Fourier transform (STFT),
25–26, 28–31Doppler frequency shift due to, 114

fast, 109 basis functions, 30
defined, 28multiple targets, 113, 117

phase compensation and, 118 fixed resolution of, 30, 78
in frequency domain, 29polar reformatting and, 104

removing, 130 with Gaussian window function, 30
illustrated, 29set of, 107

target, 98 modified, 197
of range profile, 70translational motion combined with,

119 SNR improvement with, 56–57
for spectrogram generation, 75, 77See also Translational motion

Rotation-induced micro-Doppler, 181–92 See also Linear time-frequency
transformsfrequency-domain signatures, 188–90

rotor blade motion, 181 Side-looking SAR
geometry, 148rotor blade radar returns, 181–84

time-domain signatures, 184–88, range curvature, 149–50
See also Synthetic aperture radar (SAR)190–92

See also Micro-Doppler phenomenon Signal detection, 57–58
classical, 57–58Rotation matrix, 107, 108

Rotor blades with fixed threshold, 57
unknown, 60–61CAD model, 186

Doppler frequency shift of, 188 Signal extraction, 61–63
in noise, 48–50geometry, 182

height of, 183 time-frequency expansion/
reconstruction and, 61–62length, 184

motion, 181 time-frequency masking and, 62
Signal-to-noise ratio (SNR), 2, 48radar cross section, 181

radar returns from, 181–84 additive white Gaussian noise, 54
average power, 12time-domain signatures, 184–85
defined, 11Round-trip travel time, 1–2
enhancing, 48

SAR imaging, 147–70 improvement in time-frequency
of simulated Boeing-727, 132 domain, 51–57

instantaneous power, 12–13, 54of stationary targets, 156
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in joint time-frequency domain, 56–57 Doppler shift due to, 154
effect on SAR imaging, 154, 155–57for signal detection and extraction,

54–56 Targets
Doppler difference between, 114, 115with STFT, 56–57

with WVD, 57 electromagnetic backscattering from,
Signal waveform, 9–11 6–9
Signatures. See Radar signatures extended, 113
Single-aperture antenna SAR, 157–60 initial range, 98

filter-bank approach, 158–60 maneuvering, 107–13
parameter estimation, 160 man-made, 3
subaperture focusing, 157–58 moving, 3, 94–102
See also Synthetic aperture radar (SAR) multiple, 113–20

Space-time adaptive processing (STAP), point, 113
157 radial velocity, 155

Spectrogram, 70 reflectivity, 6, 98
adaptive, 34, 35, 36, 83 rotational motion, 95, 98
STFT generation of, 75, 77 stationary, 155, 156
of strongest range cell, 133, 136, 137 translational motion, 98

Stationary targets, 155, 156 Taylor series, 127
defocused, 157 Time-domain signatures, 173, 184–88
SAR imaging of, 156 as range profiles, 187
time-frequency characteristics, 166 of rotor blades, 184–85

Stepped frequency (SF) signals, 9 Time-frequency-based image formation,
ambiguity function of, 17 104–6
defined, 9 applied to SAR data, 113
frequency spectrum, 11 applying, 104
rectangular pulse, 10 effectiveness, 112
total bandwidth, 9 maneuvering target imaging with,
waveform, 11 108–13

Subaperture focusing, 157–58 for multiple targets, 119–20
Synthetic aperture radar (SAR), 21–22 system illustration, 105

defined, 20–21 Time-frequency-based motion
high-resolution map generation, 93 compensation, 126–35
inverse (ISAR), 21, 85–89 examples, 131–35
map, 147 motion error elimination, 129–31
multiple-antenna, 161–65 phase estimation, 128–29
scenes, 147 presence of 3D target motion, 135–44
side-looking, 148, 149–50 Time-frequency coefficients, 61
single-aperture antenna, 157–60 extracted waveform, 62
time-frequency-based image formation Gabor, 62, 63

applied to, 113 Time-frequency distribution series
velocity (VSAR), 164–65 (TFDS), 42–44
See also SAR imaging application to scattering data, 79–81

defined, 42, 43Target coordinates, 95
resolution, 111Target motion
of test signal, 44Doppler frequency shift affected by,

153 time-frequency energy, 111
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Time-frequency domain target, 98
See also Rotational motionjoint, 56–63

SNR improvement in, 51–57 Velocity SAR (VSAR), 164–65
two straight lines in, 169 defined, 164

Time-frequency expansion, 61–62 illustrated, 164
Time-frequency masking, 62 processing, 165
Time-frequency reconstruction, 61–62 VFY-218 model, 88
Time-frequency signatures, 178, 180, 181, Vibration-induced micro-Doppler, 174–81

190–92 signature example of moving targets,
blade rotation rate measurement, 192 179–81
distribution, 191 time-frequency signature, 177–79
illustrated, 179, 191 See also Micro-Doppler phenomenon
of vibrating scatterer, 177–79 Vibrations, 174
See also Radar signatures characteristics of, 174

Time-frequency transforms, 25–44 modulation due to, 174
rate of scatterer, 176adaptive, 193–94
of reflecting surface, 174, 175bilinear, 36–44

classes, 26 Wigner-Ville distribution. See WVD
for detection/extraction of signals in Windowed superresolution algorithm,

noise, 48 81–83
Doppler parameter estimation with, Prony’s method, 81–83

166–68 time-frequency representation via, 83
of FRFT, 197 WVD, 37–39
linear, 26–36 cross-term interference, 39, 110
SAR imaging with, 165–70 defined, 37–38
trends in, 193–99 frequency marginal condition, 38

Time history series, 101 frequency resolution, 110
group delay property, 39Time-varying frequency filtering, 48–51
instantaneous frequency property, 38block diagram, 52
with linear low-pass filter, 111defined, 50
resolution, 79illustrated, 49, 50
SNR improvement with, 57iterative, 53
of test signal, 40reconstructed signal and, 49
for time-frequency-based imageTranslational motion, 97

formation, 110Doppler frequency shift due to, 114
time marginal condition, 38multiple targets, 113

removing, 130 X-band radar, 198–99
Xpatch, 186, 189, 191rotational motion combined with, 119
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